R1-1 分数 2

作者 刘金飞 单位 浙江大学

There are 100000 documents in the database. The statistic data for one query is shown in the following table. The precision is 20%.

						Relevant	Irrelevant						
					Retrieved	10000	40000						
					Not Retrieved	30000	20000						
• T			○F										
评测结果	答案正确												
得分	2分												
10.75	275												
1-2 分数 2			_									作者叶德仕	
					$\Phi(D_0)$ for all i , buind ed costs using Φ_i .	t $\Phi(D_0) \neq$	0. Then the	ere exists	a potential	Φ' such that	$\Phi'(D_0)=0$, $\Phi'(D_i) \geq$	0 for all
— , • т		5	○ F		5								
			0 F										
评测结果													
得分	2分												
1-3 分数 2												作者 叶德仕	AN IN NOT
		nent selection belong to the		generate longer	runs with a priori	ity queue o	size 3. Giv	en the sec	quence of n	umbers { 81,	94, 11, 96, 12	2, 35, 17, 99	9,28,58
ОТ		5											
			F										
评测结果			• F										
	答案正确 2 分		© F										
评测结果			© F										
评测结果	2分		© F									作者 陈昊	单位 浙江;
评测结果 得分 1-4 分数 2	2分	on problem, g		ance set $D=\{1$	L, 2, 2, 3, 3, 3, 5, 5	5, 6, 8}, the	re is a solut	tion that c	does not inc	ude a point a	at position 6.	作者 陈昊	单位浙江。
评测结果 得分 1-4 分数 2 n a Turnpike	2分	on problem, g	given the dist	ance set $D=\{1$	L, 2, 2, 3, 3, 3, 5, 5	5, 6, 8}, the	re is a solut	tion that c	does not inc	ude a point a	at position 6.	作者 陈昊	单位浙江之
评测结果 得分 1-4 分数 2 n a Turnpike ● T	2分 Reconstruct	on problem, g		ance set $D=\{1$	1, 2, 2, 3, 3, 3, 5, 5	5, 6, 8}, the	re is a solut	tion that c	does not inc	ude a point é	at position 6.	作者 陈昊	单位 浙江;
 评测结果 得分 1-4 分数 2 n a Turnpike ● T 评测结果 	2 分 P Reconstruct 答案正确	on problem, g	given the dist	ance set $D=\{1$	1, 2, 2, 3, 3, 3, 5, 5	5, 6, 8}, the	re is a solut	tion that c	does not inc	ude a point a	at position 6.	作者 陈昊	单位 浙江;
 评测结果 得分 1-4 分数 2 n a Turnpike ● T 评测结果 	2分 Reconstruct	on problem, g	given the dist	ance set $D=\{1$	1, 2, 2, 3, 3, 3, 5, 5	i, 6, 8}, the	re is a solut	tion that c	does not inc	ude a point a	at position 6.	作者 族吴	单位 浙江:
 评测结果 得分 1-4 分数 2 n a Turnpike ● T 评测结果 	2 分 P Reconstruct 答案正确	on problem, g	given the dist	ance set $D=\{1$	1, 2, 2, 3, 3, 3, 5, 5	5, 6, 8}, the	re is a solut	tion that c	does not inc	ude a point a	at position 6.	作者 陈奥	单位 浙江:
评测结果 得分 n a Turnpike ⑧ T 评测结果 得分	2分 Reconstruct 答案正确 2分	on problem, g	given the dist	ance set $D=\{1$	1, 2, 2, 3, 3, 3, 5, 5	5, 6, 8}, the	re is a solut	tion that c	does not inc	ude a point a	at position 6.		
 评测结果 得分 1-4 分数 2 na Turnpike T 评测结果 得分 R1-5 分数 2 	2分 Reconstruct 答案正确 2分		given the dist										
评测结果 得分 II-4 分数2 m a Turnpike ● T 评测结果 得分 RI-5 分数3 To evaluate	2分 Reconstruct 答案正确 2分 2	ms of a seque	given the dist F	mbers by the par	allel algorithm wit	th Balanced							
评测结果 得分 1-4 分数 2 n a Turnpike ● T 评测结果 得分 R1-5 分数 2 石 o evaluate C(h, i) =	2分 Reconstruct 答案正确 2分 2	ms of a seque	given the dist F ence of 16 nu is the rightmo	mbers by the par		th Balanced							
评测结果 得分 II-4 分数2 m a Turnpike ● T 评测结果 得分 RI-5 分数3 To evaluate	2分 Reconstruct 答案正确 2分 2	ms of a seque	given the dist F	mbers by the par	allel algorithm wit	th Balanced							
 评测结果 得分 1-4 分数2 na Turnpike ▼ T 评测结果 得分 R1-5 分数2 To evaluate C(h,i) = ▼ T 	2分 Reconstruct 答案正确 2分 2	ms of a seque	given the dist F ence of 16 nu is the rightmo	mbers by the par	allel algorithm wit	th Balanced							
 评测结果 得分 1-4 分数2 na Turnpike ▼ T 评测结果 得分 R1-5 分数2 To evaluate C(h,i) = ▼ T 	2 分 e Reconstruct 答案正确 2 分 the prefix-su $\sum_{k=1}^{a} A(k)$	ms of a seque	given the dist F ence of 16 nu is the rightmo	mbers by the par	allel algorithm wit	th Balanced							
 评测结果 得分 1-4 分数2 na Turnpike T 评测结果 得分 R1-5 分数2 To evaluate C(h,i) = T 评测结果 	2 分 Reconstruct 答案正确 2 分 the prefix-su $\sum_{k=1}^{d} A(k)$ 答案正确	ms of a seque	given the dist F ence of 16 nu is the rightmo	mbers by the par	allel algorithm wit	th Balanced							
 评测结果 得分 1-4 分数2 na Turnpike T 评测结果 得分 R1-5 分数2 To evaluate C(h,i) = T 评测结果 	2 分 Reconstruct 答案正确 2 分 2 the prefix-su $\sum_{k=1}^{a} A(k)$ 答案正确 2 分	ms of a seque	given the dist F ence of 16 nu is the rightmo	mbers by the par	allel algorithm wit	th Balanced							单位 浙江
 评测结果 得分 1-4 分数2 na Turnpike 下 评测结果 得分 R1-5 分数2 To evaluate C(h, i) = 下 评测结果 得分 R1-6 分数2 	$2 \frac{1}{2}$ Reconstruct $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$ the prefix-su $\sum_{k=1}^{a} A(k)$ $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$	ms of a seque where $(0, a)$ i	jiven the dist F ence of 16 nu is the rightma F	mbers by the par	allel algorithm wit	h Balanced	Binary Tree	es, $C(1,3$				作者 陈昊	单位 浙江
 评测结果 得分 1-4 分数2 na Turnpike T 评测结果 得分 R1-5 分数2 To evaluate C(h, i) = T 评测结果 得分 	$2 \frac{1}{2}$ Reconstruct $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$ the prefix-su $\sum_{k=1}^{a} A(k)$ $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$	ms of a seque where $(0, a)$ i	given the dist F ence of 16 nu is the rightma F t problems in	mbers by the par	allel algorithm wit aaf of node (h,i) .	h Balanced	Binary Tree	es, $C(1,3$				作者 陈昊	单位 浙江
 评测结果 得分 1-4 分数2 n a Turnpike T 评测结果 得分 R1-5 分数: To evaluate C(h, i) = T 评测结果 得分 R1-6 分数: NP-comple T 	$2 \frac{1}{2}$ Reconstruct $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$ the prefix-su $\sum_{k=1}^{a} A(k)$ $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$ the problems a	ms of a seque where $(0, a)$ i	jiven the dist F ence of 16 nu is the rightma F	mbers by the par	allel algorithm wit aaf of node (h,i) .	h Balanced	Binary Tree	es, $C(1,3$				作者 陈昊	单位 浙江
 评测结果 得分 1-4 分数2 na Turnpike T 评测结果 得分 R1-5 分数2 To evaluate C(h, i) = T 评测结果 得分 	$2 \frac{1}{2}$ Reconstruct $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$ the prefix-su $\sum_{k=1}^{a} A(k)$ $\frac{8 \frac{1}{2} \frac{1}{2}}{2}$	ms of a seque where $(0, a)$ i	given the dist F ence of 16 nu is the rightma F t problems in	mbers by the par	allel algorithm wit aaf of node (h,i) .	h Balanced	Binary Tree	es, $C(1,3$				作者 陈昊	单位 浙江

R1-7	分数 2

作者 丁尧相 单位 浙江大学

For an approximation algorithm for a minimization problem, given that the algorithm does not guarantee to find the optimal solution, the best approximation ratio possible to achieve is a constant $\alpha > 1$.

© Т		® F		
评测结果	答案正确			
得分	2 分			
R1-8 分数	2		作者 卜佳俊	单位 浙江大学
The height	of an AVL tree of 30 nodes can be	e 5. (The height of an empty tree is defined to be -1)		
⊚ т		○ F		
评测结果	答案正确			
得分	2 分			
R1-9 分数 2			作者卜佳俊	单位 浙江大学
Considering	leftist heaps of n nodes, the Mer	ge operation has a higher time complexity than the DeleteMin operation.		
ОТ		© F		
评测结果	答案正确			
得分	2 分			
R1-10 分数	2		作者 王灿	单位 浙江大学
Without any	assumptions on the distances, if	P $ eq$ NP, there is no $ ho$ -approximation for TSP (Travelling Salesman Problem) for any $ ho \geq 1.$		
⊙т		® F		
评测结果	答案错误			
PT INI SE IN	百米相庆			
得分	0分			
得分	0分			
			lin-she Din-she	
R1-11 分费	X2			单位 浙江大学
R1-11 分费	t 2 $g \in (V,E).$ Let $A \subseteq V$ be	any subset of $V.$ If $(u,v)\in E$ is an minimum edge connecting A and $V-A,$ then there exists an minimum s		
R1-11 分费 Given a gra such that (t 2 $g \in (V,E).$ Let $A \subseteq V$ be			
R1-11 分费 Given a gra such that (○ T	apph $G = (V, E).$ Let $A \subseteq V$ be $u, v) \in T.$	any subset of $V.$ If $(u,v)\in E$ is an minimum edge connecting A and $V-A$, then there exists an minimum s ${}^{\odot}$ F		
R1-11 分费 Given a gra such that (○ T 评测结果	な2 aph $G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. 答案错误			
R1-11 分费 Given a gra such that (○ T	apph $G = (V, E).$ Let $A \subseteq V$ be $u, v) \in T.$			
R1-11 分數 Given a gra such that (○ T 评测结果 得分	な2 $\mathrm{sph}G=(V,E).$ Let $A\subseteq V$ be $u,v)\in T.$ 答案错误 0 分		panning tree	e T of G
R1-11 分異 Given a gra such that (○ T 评测结果 得分 R1-12 分異	な2 $ghh G = (V, E).$ Let $A \subseteq V$ be $u, v) \in T.$ 答案错误 0 分	© F	panning tree 作者 陈越	
R1-11 分類 Given a gr such that (了 T 评测结果 得分 R1-12 分類 A Las Vega A Monte C Then if a M	な2 aph $G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. 答案错误 0 分 な2 is algorithm is a randomized algor arlo algorithm is a randomized algorithm i		panning tree 作者 陈越 ne input. vrithm is fixed	e T of G 单位 浙江大学 d however.
R1-11 分類 Given a gr such that (了 T 评测结果 得分 R1-12 分類 A Las Vega A Monte C Then if a M	aph $G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. Same and Control of Control 	F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on tl gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algor	panning tree 作者 陈越 ne input. vrithm is fixed	e T of G 单位 浙江大学 d however.
R1-11 分類 Given a gra such that (○ T 评测结果 得分 R1-12 分類 A Las Vega A Monte C Then if a N <i>O</i> (<i>n</i> ²) tim	aph $G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. Same and Control of Control 	F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on th gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algo lime, with the probability 50% of producing a correct solution, then there must be a Las Vegas algorithm that	panning tree 作者 陈越 ne input. vrithm is fixed	e T of G 单位 浙江大学 d however.
R1-11 分類 Given a gra such that (○ T 评测结果 得分 R1-12 分類 A Las Vega A Monte C Then if a N <i>O</i> (<i>n</i> ²) tim	a 2 $gh G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. Same and Applications Same algorithm is a randomized algorithm is a randomized algorithm is a randomized algorithm curve in $O(m)$ Same algorithm is a randomized algorithm curve in $O(m)$ in expectation.	F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on th gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algo lime, with the probability 50% of producing a correct solution, then there must be a Las Vegas algorithm that	panning tree 作者 陈越 ne input. vrithm is fixed	e T of G 单位 浙江大学 d however.
R1-11 分類 Given a gr such that (① T 评测结果 得分 R1-12 分類 A Las Vega A Monte C Then if a M $O(n^2)$ tim ③ T 评测结果	な2 $aph G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. 答案错误 0 分 as algorithm is a randomized algorithm is a randomized algorithm is a randomized algorithm carlo algorithm carlo algorithm is a randomized algorithm carlo algorithm is a randomized algorithm carlo algorithm is a randomized algorithm is a randomized algorithm is a randomized algorithm carlo algorithm is a randomized	F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on th gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algo lime, with the probability 50% of producing a correct solution, then there must be a Las Vegas algorithm that	panning tree 作者 陈越 ne input. vrithm is fixed	e T of G 单位 浙江大学 d however.
R1-11 分類 Given a gra such that (① T 评测结果 得分 R1-12 分類 A Las Vega A Monte C Then if a N O(n ²) tim ③ T 评测结果 得分	な2 $ghh G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. 答案错误 0 分 arlo algorithm is a randomized algorithm is a randomized algorithm is a randomized algonate on the expectation. 答案错误 0 分	 F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on th gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algorithm, with the probability 50% of producing a correct solution, then there must be a Las Vegas algorithm that always gives the correct solution is a correct solution. F 	ppanning tree 作者 陈越 ne input. rithm is fixed t can get a si	車 T of G 単位 新江大学 J however. olution in
R1-11 分類 Given a gr such that (① T 评测结果 得分 R1-12 分数 A Las Veg A Monte C Then if a M <i>O</i> (<i>n</i> ²) tim ④ T 评测结果 得分	a 2 a $ph G = (V, E)$. Let $A \subseteq V$ be $u, v) \in T$. Sætlig 0Δ a 2 sa algorithm is a randomized algor arlo algorithm runs in $O(n)$ e in expectation. Sætlig 0Δ	• F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on th gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algo 1 ²) time, with the probability 50% of producing a correct solution, then there must be a Las Vegas algorithm the • F	panning tree 作者 陈越 he input. withm is fixed t can get a s	A T of G 単位 断江大学 日 however. olution in
R1-11 分類 Given a gra such that (① T 评测结果 得分 R1-12 分数 A Las Vega A Monte C O(n ²) tim ② T 评测结果 得分 R1-13 分数 In the mast	$\begin{array}{c} \mathbf{x} \\ $	 F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on th gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algorithm, with the probability 50% of producing a correct solution, then there must be a Las Vegas algorithm that always gives the correct solution is a correct solution. F 	panning tree 作者 陈越 he input. withm is fixed t can get a s	A T of G 単位 断江大学 日 however. olution in
R1-11 分類 Given a gra such that (① T 评测结果 得分 R1-12 分数 A Las Vega A Monte C O(n ²) tim ② T 评测结果 得分 R1-13 分数 In the mast	$\begin{array}{c} \mathbf{x} \\ $	• F rithm that always gives the correct result, however the runtime of a Las Vegas algorithm differs depending on th gorithm whose output may be incorrect with a certain (typically small) probability. The running time for the algorithm, with the probability 50% of producing a correct solution, then there must be a Las Vegas algorithm that • F • e recursive form $T(N) = aT(N/b) + f(N)$. It means that the algorithm divides the problem into a parts, with	panning tree 作者 陈越 he input. withm is fixed t can get a s	A T of G 単位 断江大学 日 however. olution in

得分 2分

作者 刘金飞 单位 浙江大学

When searching for the keyword "game theory" on Google, the first four results returned are as follows:

Doc Text

R2-1 分数 3

1 Game theory is the study of mathematical models of strategic interactions among rational agents. It has applications in many social science fields.

2 Game theory is the study of how players strategize and make decisions. It's a way to model scenarios in which conflicts of interest exist among the players.

3 Game theory is a branch of applied mathematics that provides tools for analyzing situations in which players make interdependent decisions.

4 Hello Internet! Welcome to GAME THEORY! If you are like us, then you have probably wondered about the secrets hidden in your favorite games.

Now if we construct an inverted file index for the results shown above, ignore case(忽略大小写) and do word stemming, please fill in the blanks in the inverted file index (not complete) below:

	No.	Term	Times; Documents; Words		
	1	game	$\langle 5; (1;1), (2;1), (3;1), (4;5), (4;24) \rangle$		
	2	strategy	$\langle 2; (1;10), (2; \textcircled{1}) \rangle$		
	3	apply	$\langle 2;(1;17),(3;7) angle$		
	4	math	$\langle 2; (1;7), (\underline{2};8) \rangle$		
\bullet A. (1) = 9, (2) = 3	○ B. ① = 9, ② =	1	\odot C. (1) = 10, (2) = 3	\bigcirc D. (1) = 10, (2) = 1	
评测结果 <mark>答案正确</mark>					
得分 3分					
R2-2 分数 3				作者 刘金飞 自	单位 浙江大学
If we insert $N(N \ge 2)$ nodes (with	h different integer elements) cor	secutively	r to build a red-black tree T from an empty	r tree, which of the following situations is possible:	
• A Aller der is There black					
\bigcirc A. All nodes in T are black					
B. The number of leaf nodes (N					
 C. 2N rotations occurred durin 					
$^{\circ}$ D. The height of T is $\lceil 3 \log_2(R) \rceil$	V+1) (assume the height of t	he empty	tree is 0)		
评测结果 <mark>答案正确</mark>					
得分 3分					
R2-3 分数 3				作者 叶德仕 鸟	单位 浙江大学
In external sorting, suppose we hav	ve n runs of lengths $2^0, 2^1, \ldots, n$	2^{n-1} , resp	ectively. To obtain the minimum merge tim	e, which of the following statement is FALSE?	
 A. The first merge will be the rule 	on of lengths 20 and 21				
 A. The first merge will be the rt B. The total number of merges 					
 C. The order of merging must be 		a the			
		gtns.			
 D. The Huffman's algorithm wil 	i get the minimum merge time.				
评测结果 <mark>答案正确</mark>					
得分 3分					
R2-4 分数 3				作者 叶德仕	单位 浙汀大:
A sum list L is a data structure that	can support the followice eres	tions		177 ME N 1 MA 144	. mar narrada P S
	can support the following operation				

• Sum(L): sum all items in the list L, and replace the list with a list containing one item that is the sum. The cost is the length of the list |L| dollars.

Now we would like to show that any sequence of Insert and Sum operations can be performed in O(1) amortized cost per insert and O(1) amortized cost per Sum. Which of the following statement is TRUE?

 \odot A. We use the accounting method that charges an amortized cost of 2 dollars to Insert and 0 dollar for Sum.

B. We use the potential function to be the number of elements in the list.

O C. We use the potential function to be the opposite number of elements in the list.

 \odot D. Neither method can show the amortized cost for Insert and Sum is O(1).

· Insert (x, L): insert the item x into the list L. The cost is 1 dol

R2-5 分数 3			作者	陈昊 单位 浙江大学
Given the following game tree, no	de d will be pruned with $lpha-eta$ prunir	g algorithm if and only if		
max 🔷				
min O				
max				
6 6 6 3 6	Ъ°. Ч			
◎ A. b ≤ 68	○ B. b ≥ 86	\odot C. b \geq 58	\odot D. 58 \leq b \leq 68	
评测结果 答案正确				
得分 3分				
R2-6 分数 3			ΎE=	皆陈昊 单位 浙江大学
we turn it into a Ranking problem	That is, to compute RANK(A(i),B) and is binary search parallel ranking for so	, $A(n)$ and $B(1)$, $B(2)$,, $B(n)$ into another nor I RANK($B(i)$, A) for every $1 \le i \le n$, where RAI ving the problem parallely.		olve it in parallel,
	position of e in s by binary search.			
The following psuedo-code	is serial ranking for solving the problem	n.		
<pre>i = j = 0; while (i ≤ n j ≤ m) { if (A(i+1) < B(j+1)) RANK(++i, B) = j; else RANK(++j, A) = i; }</pre>				
How many of the following staten	nents are True ?			
• For binary search parallel ranking, $T(n) = 0$	nking, $T(n) = O(\log n), W(n) = O(n), W(n) = O(n)$	$(n\log n)$ be solved in $O(1)$ time and $O(n)$ work.		
○ A. 0	○ B. 1	• C. 2	O D. 3	
评测结果 答案错误				
得分 0分				
R2-7 分数 3			作	皆陈昊 单位 浙江大学
 Replace "+" by "max" in the p There exists a parallel algorith With high probability, parallel 	nm solving the problem in constant tir random sampling algorithm can run v	an algorithm with $T(n) = O(\log n)$, $W(n) =$ ne.		
O A. 0	O B. 1	◎ C. 2	O D. 3	
评测结果 答案正确				
得分 3分				
R2-8 分数 3			作者	住俊 单位 浙江大学
	3		143	FIK FUMLAF
For the result of accessing the keys nodes, not the key values.)	: 2 and 3 (in order) of the splay tree in	the figure, which one of the following stateme	nts is FALSE ? (Note: the numbers are the	indices of the

 A. 3 is the root
 B. 1 is the parent of 7
 C. 4 and 9 are siblings
 Image: D. 2 and 9 are siblings

 評測結果
 答案正确

 得分
 3 分

作者 卜佳俊 单位 浙江大学

R2-9 分数 3

After inserting 15 into the Skew Heap in the figure, which of the following statements is correct for the resulted Skew Heap?

After inserting 15 into the skew freap in the righter, which of the following statements is c	offeet for the resulted over freep.			
\odot A. Node 15 is the right child of node 12	\odot B. Node 17 is the right child of node 7 $$			
C. Node 15 and node 24 are siblings A statement of the stateme	\bigcirc D. The resulted heap is a leftist heap			
评测结果 答案正确				
得分 3分				
R2-10 分数 3			作者卜佳俊	单位 浙江大学
A and 10 have the same NPL.	ALSE ?			
○ A. 0	O C. 2	O D. 3		
评测结果 <mark>答案正确</mark>				
得分 3分				

R2-11 分数 3

作者 王灿 单位 浙江大学

Consider the metric Facility Location problem. A company wants to distribute its product to various cities. There is a set I of potential locations where a storage facility can be opened and a fixed "facility cost" f_i associated with opening a storage facility at location $i \in I$. (Sometimes we will say "facility i" to mean "facility at location i"). There also is a set J of cities to which the product needs to be sent, and a "routing cost" c(i, j) associated with transporting the goods from a facility at location i to city j. The goal is to pick a subset S of I so that the total cost of opening the facilities and transporting the goods is minimized. In short, we want to minimize $C(S) = C_f(S) + C_r(S)$, where $C_f(S) = \sum_{i \in S} f_i$ and $C_r(S) = \sum_{i \in J} \min_{i \in S} c(i, j)$. Consider the following local serach algorithm:

1. Picking any subset S of the set I of facilities. This give us a feasible solution right away.

2. We then search for the local neighborhood of the current feasible solution to see if there is a solution with a smaller objective value; if we find one we update our feasible solution to that one.

3. We repeat step 2 until we do not find a local neighbor that yields a reduction in the objective value.

There are two types of "local steps" that we take in searching for a neighbor: i) remove/add a facility from/to the current feasible solution, or ii) swap a facility in our current solution with one that is not.

Which of the following statement is true?

O A. This algorithm is 2-approximation.

- \odot B. Let S be a local optimum that the above algorithm terminates with, and S^* be a global optimum. Then $C_r(S) \geq C(S^*)$.
- @ C. Let S be a local optimum that the above algorithm terminates with, and S^* be a global optimum. Then $C_r(S) \leq C(S^*)$.

 $\odot\,$ D. None of the other options are correct.

评测结果 答案正确得分 3分

R2-12 分数 3

作者 丁尧相 单位 浙江大学

How many of the following arguments are correct?

· A decision problem in P is also in both NP and co-NP.

For non-deterministic Turing machine, "non-deterministic" means that the operations of the machine are random, such that the results of the operations are not deterministic.
If a decision problem A can be reduced to B, then it means that problem A is strictly easier than B in terms of computational complexity.

O A. 0		® B. 1	O C. 2	O D. 3
评测结果	答案正确			
得分	3 分			

R2-13 分数 3

作者 丁尧相 单位 浙江大学

Consider the 0-1 knapsack problem with object weights w, profits v, and total weight limit B (means that w of any object is no larger than B). In the class, we have learned that combining the greedy algorithm on maximum profit v and maximum profit-weight ratio v/w leads to an approximation algorithm which always produces a solution no less than 1/2 of the optimal solution. Now let us consider the following simplified greedy algorithm. The algorithm first conducts the following sorting w.r.t. profit-weight ratio:

BA 3 A 24 B 223 C 223 B 223 C 2.23 B 233 24 0.23 C 25 C.22 0.24.25 B 33 24 24 B 25 C.22 0.2.125 <th></th> <th>so that $r_1 \ge$</th> <th>$\geq r_2 \geq \cdots \geq r_n.$</th> <th></th> <th></th>		so that $r_1 \ge$	$\geq r_2 \geq \cdots \geq r_n.$		
A is a signifurn always muture at solution to less than or of the optimal solution, while a < 1/2. Is a signifurn always muture a solution to less than 0 of the optimal solution. B is a signifurn always muture as solution to less than 0 of the optimal solution. Is a signifurn always muture as solution to less than 0 of the optimal solution. B is a signifurn always muture as solution to less than 0 of the optimal solution. Is a signifurn always muture as solution. Is a significant of the optimal solution. A is a signifurn always muture as solution. Is a significant of the optimal solution. Is a significant of the optima			ich that the total weight of the first k objects exceeds	$B.$ Finally, we pick the more valuable of $\{a$	$\{a_k,\ldots,a_{k-1}\}$ and $\{a_k\}$
c he support the support that use out that no less then 1/2 of the segment out doubt. Description as generate audition which is arbitrary worse than the optimal outcome. a generate support that a generate support that a generate support that the optimal outcome. a generate support that a generate support that a generate support that the optimal outcome. a generate support that the optimal outcome. a generate support that			, while $lpha < 1/2$.		
Rate and a set of the following is NOT an element of Greedy strategy? A optimal substructure B. works only if the local optimum is equal to the global optimum C overtapping sub-problems D make a choice before solving the remaining sub-problem Rate at a set of the following of S tharacters, given their occurrence frequencies being 3, 5, 7, 11 and 14, the weighted average length of Huffman codes for S is: A 1 B 2 2 2 0 D strates B 2 3 0 (mass a function of S is: A 2 1 B 2 3 0 (mass a function of S is: A 2 3 0 (mass a function of S is: A 2 4 B 2 3 0 B 2 3 0 (mass a function of S is: A 2 1 B 2 3 0 B 2 3 0 B 2 3 0 (mass a function of S is: A 2 1 B 2 3 0 B 2 3 0 B 2 3 0 B 2 3 0 (mass a function of S is: A 2 1 B 2 3 0 <td>· ,</td> <td></td> <td></td> <td></td> <td></td>	· ,				
9 9 9 9 9 9 9 9 9 00 9 00 10 00 00 00 00 00 00 00 00 00 00 00	D. The algorithm can generate a solution v	which is arbitrarily worse than the optim	nal solution.		
A optimal substructure B. works only if the local optimum is equal to the global optimum C. overpipping sub-problems B. make a -holec before solving the remaining sub-problem B. state B. Stat	评测结果 <mark>答案正确</mark> 得分 3分				
A optimula ubstructure B works only if the local optimum is equal to the global optimum C our sub-problems B mate - those before solving the remaining sub-problem B mate - those - those before solving the remaining sub-problem B mate - those	-14 分数 3				作者 陈越 单位 浙江
 a. works only if the local optimum is equal to the global optimum c. overisping sub-problems D. make - thoice before solving the remaining sub-problem The state - thoice before solving the remaining sub-problem The state - thoice before solving the remaining sub-problem The state - thoice before solving the remaining sub-problem The state - thoice before solving the remaining sub-problem The state - thoice before solving the remaining sub-problem The state - thoice before solving the remaining sub-problem The state - thoice before solving the remaining sub-problem The state - thoice before solving the state - thoice - th	nich of the following is NOT an element	t of Greedy strategy?			
C. orderspring sub-problems D. make a choice before solving the remaining sub-problem STREE STREE Street Stret Street <td>A. optimal substructure</td> <td></td> <td></td> <td></td> <td></td>	A. optimal substructure				
D. make a choice before solving the remaining sub-problem IF 3 3 ************************************	B. works only if the local optimum is	equal to the global optimum			
RAD S 20 15 20 3 16 20 3 15 20 3 16 20 3 17 0 0. 2.225 18 2.225 0. 2.20 19 3.0 10 0. 2.225 0. 2.215 10 0. 2.225 0. 2.215 10 0. 2.215 0. 2.215 10 0. 2.215 0. 2.215 10 0. 2.215 0. 2.215 10 0. 2.215 0. 2.215 10 10. 2.125 0. 2.215 10 10. 2.125 0. 2.215 10 10. 2.125 0. 2.215 10 10. 10. 10. 10. 10. 2.105 0. 2.125 10 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	C. overlapping sub-problems				
BAD 3 D 15 9 26.3 PRIME P	D. make a choice before solving the r	remaining sub-problem			
15 923 0 R 0 201 16 923 0 R 0 225 0 R 223 2 1 0 B 2225 0 C 22 0 D 2125 PREME #### 20 3 37 0 R 0 215 0 R 0 215 15 923 0 C 22 0 D 2125 PREME #### 20 3 37 0 R 0 225 0 D 2125 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	平测结果 <mark>答案正确</mark>				
A 2.1 0 B. 2.25 C. 2.2 D. D. 2.125 B. 2.25 D. D. 2.125 B. 2.25 C. 2.2 D. D. 2.125 B. 2.25 D. D. 2	导分 3分				
A 2.1 0 B. 2.25 C. 2.2 D. D. 2.125 PARE REAL PARE REAL PARE PARE PARE PARE PARE PARE PARE PARE					
A A A A A A A A A A A A A A A A B B	A. 2.1				• IS:
t_{-16} dgg_3 feg_{RB} ge_{CB} t_{0} feg_{RB} ge_{CB} feg_{RB} ge_{CB} t_{0} fig_{1} $the kth smallest number in a set S, randomized quick selection algorithm works in the following way: t_{1} fig_{1} the kth smallest number in S. the following state the set ta central splitter p \in S, which is a pivot that divides the set so that each side contains at least S /4 elements. S. S. 2. Randomly select a central splitter p \in S, which is a pivot that divides the set so that each side contains at least S /4 elements. S. S. S. 3. Partition S - \{p\} into S_1 and S_2, as we done with quickscrt. the S_1 + 1, return the pivot as the answer. Otherwise, recursively find the (k - S_1 - 1)st smallest number S_2. S = n, then the best upper bound of the expected time complexity of this algorithm is: S = O(n^2) C. O(n \log n) D. O((3/4)^n) Fig_{RBR} ffattigg gg_{2} 0 gg Gf_{2} $					
Image: Index the smallest number in a set S , randomized quick selection algorithm works in the following way: 1. If $ S = 1$, then $k = 1$ and return the only element in S . 2. Randomly select a central splitter $p \in S$, which is a pivot that divides the set so that each side contains at least $ S /4$ elements. 3. Partition $S - \{p\}$ into S_1 and S_2 , as was done with quicksort. 4. If $k \leq S_1 $, recursively find the k th smallest number in S_1 . If $k = S_1 + 1$, return the pivot as the answer. Otherwise, recursively find the $(k - S_1 - 1)$ st smallest number S_2 . $ S = n$, then the best upper bound of the expected time complexity of this algorithm is: A . $O(n)$ B . $O(n^2)$ C . $O(n \log n)$ D . $O((3/4)^n)$ If $R \leq R$ B P and P					
Image: Index the smallest number in a set S , randomized quick selection algorithm works in the following way: 1. If $ S = 1$, then $k = 1$ and return the only element in S . 2. Randomly select a central splitter $p \in S$, which is a pivot that divides the set so that each side contains at least $ S /4$ elements. 3. Partition $S - \{p\}$ into S_1 and S_2 , as was done with quicksort. 4. If $k \leq S_1 $, recursively find the k th smallest number in S_1 . If $k = S_1 + 1$, return the pivot as the answer. Otherwise, recursively find the $(k - S_1 - 1)$ st smallest number S_2 . $ S = n$, then the best upper bound of the expected time complexity of this algorithm is: A . $O(n)$ B . $O(n^2)$ C . $O(n \log n)$ D . $O((3/4)^n)$ If $M \leq 1$ B . $O(n^2)$ C . $O(n \log n)$ D . $O((3/4)^n)$ If $M \leq 0$ B A find-Min operation can take $\Theta(1)$. B . The worst case of insertion is $\Theta(N)$. A . Find-Min operation can take $\Theta(1)$. B . The worst case of insertion is $\Theta(N)$. C . The amortized time of insertion is $\Theta(1)$. D . Delete-Min operation can take $\Theta(\log N)$. D . Delete-Min operation can take $\Theta(\log N)$.					
S_2 . Image: S_2 $ S = n, then the best upper bound of the expected time complexity of this algorithm is: A, O(n) B, O(n^2) A, O(n) B, O(n^2) A, O(n) D, O((3/4)^n) PRMSRR SR#tig (A, O(n)) 0, O((3/4)^n) PRMSRR SR#tig (A, O(n)) D, O((3/4)^n) (A, O(n)) (A, O(n)) (A, O(n)) (A, O(n)) (A, C(n)) (A, C(n)) (A, Find-Min operation can take O(1). (A, Find-Min operation can take O(1). (A, Find-Min operation can take O(1). (A, Find-Min operation can take O(1). (A, Find-Min operation can take O(1). (A, Find-Min operation can take O(1). $	9-16 分数 3				作者 陈越 单位 浙江
A. O(n) B. O(n ²) C. O(n log n) D. O((3/4) ⁿ) 弾測結果 各案指误 得分 0分 H-17 分数3 作者 Yang Yang 単位 浙江3 thich of the following statements about binomial queue is FALSE? A. Find-Min operation can take O(1). B. The worst case of insertion is O(N). C. The amortized time of insertion is O(1). D. Delete-Min operation can take O(log N).	find the $k{\rm th}$ smallest number in a set i 1. If $ S =1,$ then $k=1$ and return t 2. Randomly select a central splitter p	the only element in $S.$ $p\in S,$ which is a pivot that divides			作者 陈越 单位 浙江
評測結果 答案错误 得分 0分 hich of the following statements about binomial queue is FALSE? A. Find-Min operation can take Θ(1). ● B. The worst case of insertion is Θ(N). C. The amortized time of insertion is Θ(1). ● D. Delete-Min operation can take Θ(log N).	p find the <i>k</i> th smallest number in a set <i>i</i> . 1. If $ S = 1$, then $k = 1$ and return t 2. Randomly select a central splitter <i>p</i> 3. Partition $S - \{p\}$ into S_1 and S_2 , 4. If $k \le S_1 $, recursively find the <i>k</i> th	the only element in $S.$ $p \in S$, which is a pivot that divides as was done with quicksort.	s the set so that each side contains at least $\left S ight $	/4 elements.	
得分 0分 17 分数3 作者 Yang Yang 单位浙江 hich of the following statements about binomial queue is FALSE? A. Find-Min operation can take $\Theta(1)$. ● B. The worst case of insertion is $\Theta(N)$. C. The amortized time of insertion is $\Theta(1)$. ● D. Delete-Min operation can take $\Theta(\log N)$.	o find the <i>k</i> th smallest number in a set <i>i</i> 1. If $ S = 1$, then $k = 1$ and return t 2. Randomly select a central splitter <i>p</i> 3. Partition $S - \{p\}$ into S_1 and S_2 , i 4. If $k \leq S_1 $, recursively find the <i>k</i> th S_2 .	the only element in $S.$ $p\in S,$ which is a pivot that divides as was done with quicksort. In smallest number in $S_1.$ If $k= S $	s the set so that each side contains at least $ S $ ert_1ert+1 , return the pivot as the answer. Otherwi	/4 elements.	
作者 Yang Yang 単位 浙江 thich of the following statements about binomial queue is FALSE? A. Find-Min operation can take $\Theta(1)$. B. The worst case of insertion is $\Theta(N)$. C. The amortized time of insertion is $\Theta(1)$. D. Delete-Min operation can take $\Theta(\log N)$.	1. If $ S = 1$, then $k = 1$ and return t 2. Randomly select a central splitter p 3. Partition $S - \{p\}$ into S_1 and S_2 , i 4. If $k \le S_1 $, recursively find the k th S_2 .	the only element in S . $p \in S$, which is a pivot that divides as was done with quicksort. In smallest number in S_1 . If $k = S $.	s the set so that each side contains at least $ S $ $ _1 +1$, return the pivot as the answer. Otherwiths algorithm is:	/4 elements. se, recursively find the $(k- S_1 -1)$	
hich of the following statements about binomial queue is FALSE? A. Find-Min operation can take $\Theta(1)$. B. The worst case of insertion is $\Theta(N)$. C. The amortized time of insertion is $\Theta(1)$. D. Delete-Min operation can take $\Theta(\log N)$.	o find the <i>k</i> th smallest number in a set <i>i</i> . 1. If $ S = 1$, then $k = 1$ and return t 2. Randomly select a central splitter <i>p</i> 3. Partition $S - \{p\}$ into S_1 and S_2 , 4. If $k \leq S_1 $, recursively find the <i>k</i> th S_2 . S = n, then the best upper bound of A. $O(n)$	the only element in S . $p \in S$, which is a pivot that divides as was done with quicksort. In smallest number in S_1 . If $k = S $.	s the set so that each side contains at least $ S $ $ _1 +1$, return the pivot as the answer. Otherwiths algorithm is:	/4 elements. se, recursively find the $(k- S_1 -1)$	
A. Find-Min operation can take $\Theta(1)$. Image: B. The worst case of insertion is $\Theta(N)$. C. The amortized time of insertion is $\Theta(1)$. D. Delete-Min operation can take $\Theta(\log N)$.	o find the <i>k</i> th smallest number in a set <i>i</i> 1. If $ S = 1$, then $k = 1$ and return t 2. Randomly select a central splitter <i>p</i> 3. Partition $S - \{p\}$ into S_1 and S_2 , i 4. If $k \leq S_1 $, recursively find the <i>k</i> th S_2 . S = n, then the best upper bound of A. $O(n)$ 详测结果 答案错误	the only element in S . $p \in S$, which is a pivot that divides as was done with quicksort. In smallest number in S_1 . If $k = S $.	s the set so that each side contains at least $ S $ $ _1 +1$, return the pivot as the answer. Otherwiths algorithm is:	/4 elements. se, recursively find the $(k- S_1 -1)$	
C. The amortized time of insertion is $\Theta(1)$.	o find the <i>k</i> th smallest number in a set <i>i</i> . 1. If $ S = 1$, then $k = 1$ and return t 2. Randomly select a central splitter <i>p</i> 3. Partition $S - \{p\}$ into S_1 and S_2 , 4. If $k \leq S_1 $, recursively find the <i>k</i> th S_2 . S = n, then the best upper bound of A. $O(n)评测结果 答案错误得分 0分$	the only element in S . $p \in S$, which is a pivot that divides as was done with quicksort. In smallest number in S_1 . If $k = S $.	s the set so that each side contains at least $ S $ $ _1 +1$, return the pivot as the answer. Otherwiths algorithm is:	/4 elements. se, recursively find the $(k- S_1 -1)$ \odot D. $O((3/4)^n)$	st smallest numbe
C. The amortized time of insertion is $\Theta(1)$.	find the <i>k</i> th smallest number in a set <i>t</i> 1. If $ S = 1$, then $k = 1$ and return t 2. Randomly select a central splitter <i>p</i> 3. Partition $S - \{p\}$ into S_1 and S_2 , i 4. If $k \leq S_1 $, recursively find the <i>k</i> th S_2 . S = n, then the best upper bound of 0. A. $O(n)$ i#???!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	the only element in S . $p \in S$, which is a pivot that divides as was done with quicksort. In smallest number in S_1 . If $k = S $ of the expected time complexity of \odot B. $O(n^2)$	s the set so that each side contains at least $ S $ $ _1 +1$, return the pivot as the answer. Otherwiths algorithm is:	/4 elements. se, recursively find the $(k- S_1 -1)$ \odot D. $O((3/4)^n)$	st smallest numbe
	find the kth smallest number in a set I . If $ S = 1$, then $k = 1$ and return I . Randomly select a central splitter p 3. Partition $S - \{p\}$ into S_1 and S_2 , i 4. If $k \leq S_1 $, recursively find the kth S_2 . S = n, then the best upper bound of 0. A. $O(n)$ 评测结果 答案错误 得分 0分	the only element in S . $p \in S$, which is a pivot that divides as was done with quicksort. In smallest number in S_1 . If $k = S $. If the expected time complexity of \bigcirc B. $O(n^2)$ t binomial queue is FALSE?	is the set so that each side contains at least $ S $ $ _1 + 1$, return the pivot as the answer. Otherwi this algorithm is: $@$ C. $O(n \log n)$	/4 elements. se, recursively find the $(k - S_1 - 1)$ \odot D. $O((3/4)^n)$ 作者	st smallest numbe
	find the k th smallest number in a set I . If $ S = 1$, then $k = 1$ and return I . Randomly select a central splitter p 3. Partition $S - \{p\}$ into S_1 and S_2 , i 4. If $k \leq S_1 $, recursively find the k th S_2 . S = n, then the best upper bound of 0. A. $O(n)$ 评测结果 答案错误 得分 0分 -17 分数 3 hich of the following statements about 0. A. Find-Min operation can take $\Theta(1)$	the only element in S . $p \in S$, which is a pivot that divides as was done with quicksort. In smallest number in S_1 . If $k = S $. If the expected time complexity of \odot B. $O(n^2)$ t binomial queue is FALSE? I).	s the set so that each side contains at least $ S $ ' $_1 + 1$, return the pivot as the answer. Otherwi 'this algorithm is: © C. $O(n \log n)$ © B. The worst case of inser	/4 elements. se, recursively find the $(k- S_1 -1)$ \odot D. $O((3/4)^n)$ 作者 tion is $\Theta(N)$.	st smallest numbe

R2-18 分数 3			作者 Yang Yang 单位 浙江大学
function-like array. Formally, for an ar $a[k-1] > a_k < a[k+1] < < a$	rray $a,$ let k be the position of its extr $a[n].$ Apply the ternary search metho	Notonic array. As an extension, we will use the ternary emum. Then we have either $a[1]<\ldots< a[k-1]<$ d to locate $k.$ For a given interval $1\leq l< r\leq n$, loc value, which of the following pieces of code can correct	a[k]>a[k+1]>>a[n] or $a[1]>>$ cate the two trisection points in $[l,r]$ as $m1=l+1$
A. if(a[m1] < a[m2]) I = m1; else r	= m2;	B. if(a[m1] < a[m2]) I = m2; else	r = m1;
Oc. if(a[m1] < a[m2]) r = m2; else l	= m1;	D. if(a[m1] < a[m2]) r = m1; else	l = m2;
评测结果 答 <mark>案正确</mark>			
得分 3分			
R2-19 分数 3			作者 Yang Yang 单位 浙江大学
In a binomial queue, we donote the to lowing statements is FALSE?	otal number of the nodes at even dep	oth and odd depth as N_1 and N_2 , respectively (the ro	not is defined to be at the depth 0). Which of the fol-
${\ensuremath{ \circ }}$ A. If $N_1>N_2$, then N_1+N_2 ca	an be even.	\odot B. If N_1+N_2 is odd, then N_1 $>$	$> N_2.$
\odot C. For all cases, $N_1 \geq N_2.$		\odot D. For all cases, $N_1-N_2\leq 1.$	
评测结果 答案正确			
得分 3分			
R2-20 分数 3			作者 Yang Yang 单位 浙江大学
Consider the following function, where	e the time complexity for function ca	lc() is $O(1)$.	
<pre>void fun(int L, int r) { if(r-l:l=l:234) neturn; int m=(l+r)/2; int m=(l+r)/2; fun(l, m); fun(m=l, m2); for(int k=l;k:cr-l+l;k++) for(int i=l;i:cr-l+l;k+) for(int j=l;i:cr;j+z)) calc(j, i); fun(m=l, n2); }</pre>			
Assume the initial input is l=1, r=N, W	hat is the running time of this function	on? Your answer should be as tight as possible.	
\odot A. $O(Nlog^2N)$	\odot B. $O(N^{2.5})$	\odot C. $O(N^2 log N)$	${\ensuremath{}}$ D. $O(N^2 log^2 N)$
评测结果 答案正确			
得分 3分			
R5-1 分数 6 Is it a B+ tree?			作者 刘金飞 单位 浙江大学
The teacher wants to write the ISBPT B+ tree structure is defined as follows		ted by students satisfy the definition of the B+ tree of	f a given order (e.g., order 4) learned in our class. The
typedef struct BpTNode BpTNode; struct BpTNode { bool isLeaf; /* 1 if this node i bool isRoot; /* 1 if this node i	s a leaf, or 0 if not */ s the root, or 0 if not */ to children. This field is not used b alid children (not NULL) */	y leaf nodes. */	

Fortunately, the students are all brilliant, so the B+ trees they submit guarantee to meet the following properties: 1. There is a root node, and all leaf nodes are at the same depth; 2. The key values stored in all leaf nodes are arranged in strictly ascending order from left to right.

Your task is to complete the function 158pT as follows so that the teacher can determine whether a tree submitted by a student meets the other properties required by the definition of the B+ tree of a given order. Return true if the tree is a B+ tree, or false if not.

```
void table(Testing the second table t
```

R6-1 Manager of Tasks 分数 8

全屏浏览 切换布局

作者 王灿 单位 浙江大学

There are N tasks arranged in a sequence on a machine waiting to be executed, and their order cannot be changed. You need to divide these N tasks into several groups, each containing several consecutive tasks. Starting from time 0, the tasks are processed in groups, and the time required to execute the i-th task is T_i . Additionally, the machine requires a startup time S before each group of tasks begins, so the time required for a group of tasks is the startup time S plus the sum of the time required for each task in this group.

After a task is executed, it will wait briefly in the machine until all tasks in that group are completely executed. That is to say, the tasks in the same group will be completed at the same time. The cost of each task is its completion time multiplied by a cost coefficient C_i .

Please plan a grouping scheme for the machine to minimize the total cost.

For all testing data, $1 \leq N \leq 1000, 0 \leq S \leq 50, 1 \leq T_i, C_i \leq 100$

Function Interface:

1 long long min_cost(int N, int S, int T[], int C[]);

where τ , c are arrays of integers with N elements, and s is the startup time S mentioned above.

```
#include <stdio.h>
#define MAXN 1000
long long min_cost(int N, int S, int T[], int C[]);
int main() {
    int N, S;
    int T[MAXN], C[MAXN];
    scanf("%d%d", &N, &S);
    for (int i = 0;i < N; ++ i) {
        scanf("%d%d", &T[i], &C[i]);
    }
    printf("%lld\n", min_cost(N, S, T, C));
    return 0;
}
/* Your function will be put here */</pre>
```

Sample Input:

5	,⊀ Tr [] Ō
1	
1 3	
3 2	
4 3	
1 3 3 2 4 3 2 3 1 4	
1 4	

Sample Output:

153

Sample Explanation

We have grouped the tasks into 3 groups, which are $\{1, 2\}, \{3\}, \{4, 5\}$. The completion time corresponding to each task, in the order of the task numbers, is $\{5, 5, 10, 14, 14\}$. Similarly, the cost corresponding to each task, again in the order of the task numbers, is $\{15, 10, 30, 42, 56\}$. The total cost of these tasks is 153.

代码长度限制	16 KB
时间限制	400 ms
内存限制	64 MB