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CHAPTER 4
Number Theory and Cryptography

SECTION 4.1 Divisibility and Modular Arithmetic
2. a) 1 | a since a = 1 · a . b) a | 0 since 0 = a · 0.

4. Suppose a | b , so that b = at for some t , and b | c , so that c = bs for some s . Then substituting the first
equation into the second, we obtain c = (at)s = a(ts). This means that a | c , as desired.

6. Under the hypotheses, we have c = as and d = bt for some s and t . Multiplying we obtain cd = ab(st),
which means that ab | cd , as desired.

8. The simplest counterexample is provided by a = 4 and b = c = 2.

10. In each case we can carry out the arithmetic on a calculator.
a) Since 8 · 5 = 40 and 44 − 40 = 4, we have quotient 44 div 8 = 5 and remainder 44 mod 8 = 4.
b) Since 21 · 37 = 777, we have quotient 777 div 21 = 37 and remainder 777 mod 21 = 0.
c) As above, we can compute 123 div 19 = 6 and 123 mod 19 = 9. However, since the dividend is negative
and the remainder is nonzero, the quotient is −(6+1) = −7 and the remainder is 19− 9 = 10. To check that
−123 div 19 = −7 and −123 mod 19 = 10, we note that −123 = (−7)(19) + 10.
d) Since 1 div 23 = 0 and 1 mod 23 = 1, we have −1 div 23 = −1 and −1 mod 23 = 22.
e) Since 2002 div 87 = 23 and 2002 mod 87 = 1, we have −2002 div 87 = −24 and 2002 mod 87 = 86.
f) Clearly 0 div 17 = 0 and 0 mod 17 = 0.
g) We have 1234567 div 1001 = 1233 and 1234567 mod 1001 = 334.
h) Since 100 div 101 = 0 and 100 mod 101 = 100, we have −100 div 101 = −1 and −100 mod 101 = 1.

12. a) Because 100 mod 24 = 4, the clock reads the same as 4 hours after 2:00, namely 6:00.
b) Essentially we are asked to compute 12− 45 mod 24 = −33 mod 24 = −33+48 mod 24 = 15. The clock
reads 15:00.
c) Because 168 ≡ 0 (mod 24), the clock read 19:00.

14. This problem is equivalent to asking for the right-hand side mod 19. So we just do the arithmetic and
compute the remainder upon division by 19.
a) 13 · 11 = 143 ≡ 10 (mod 19) b) 8 · 3 = 24 ≡ 5 (mod 19)
c) 11 − 3 = 8 (mod 19) d) 7 · 11 + 3 · 3 = 86 ≡ 10 (mod 19)
e) 2 · 112 + 3 · 32 = 269 ≡ 3 (mod 19) f) 113 + 4 · 33 = 1439 ≡ 14 (mod 19)

16. Assume that a ≡ b (mod m). This means that m | a − b , say a − b = mc , so that a = b + mc . Now let us
compute a mod m . We know that b = qm+ r for some nonnegative r less than m (namely, r = b mod m).
Therefore we can write a = qm + r + mc = (q + c)m + r . By definition this means that r must also equal
a mod m . That is what we wanted to prove.
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18. By Theorem 2 we have a = dq + r with 0 ≤ r < d . Dividing the equation by d we obtain a/d = q + (r/d),
with 0 ≤ (r/d) < 1. Thus by definition it is clear that q is $a/d% . The original equation shows, of course,
that r = a− dq , proving the second of the original statements.

20. In each case we just apply the division algorithm (carry out the division) to obtain the quotient and remainder,
as in elementary school. However, if the dividend is negative, we must make sure to make the remainder
positive, which may involve a quotient 1 less than might be expected.
a) Since −17 = 2 · (−9) + 1, the remainder is 1. That is, −17 mod 2 = 1. Note that we do not write
−17 = 2 · (−8) − 1, so −17 mod 2 &= −1.
b) Since 144 = 7 · 20 + 4, the remainder is 4. That is, 144 mod 7 = 4.
c) Since −101 = 13 · (−8) + 3, the remainder is 3. That is, −101 mod 13 = 3. Note that we do not write
−101 = 13 · (−7) − 10; we can’t have −101 mod 13 = −10, because a mod b is always nonnegative.
d) Since 199 = 19 · 10 + 9, the remainder is 9. That is, 199 mod 19 = 9.

22. In each case we do the division and report the quotient (a div m) and the remainder (a mod m). It is
important to remember that the quotient needs to be rounded down, which means that if the dividend is
negative, as in part (a), the quotient is a number with a larger absolute value.
a) 111/99 is between 1 and 2, so the quotient is −2 and the remainder is −111−(−2) ·99 = −111+198 = 87.
b) −9999/101 = −99, so that is the quotient and the remainder is 0.
c) 10299 div 999 = 10, 10299 mod 999 = 10299 − 10 · 999 = 309
d) 123456 div 1001 = 123, 123456 mod 1001 = 333

24. a) We can get into the desired range and stay within the same modular equivalence class by subtracting 2 ·23,
so the answer is a = 43 − 46 = −3.
b) 17 − 29 = −12, so a = −12. c) a = −11 + 5 · 21 = 94

26. Among the infinite set of correct answers are 4, 16, −8, 1204, and −7016360.

28. We just subtract 3 from the given number; the answer is “yes” if and only if the difference is divisible by 7.
a) 37 − 3 mod 7 = 34 mod 7 = 6 &= 0, so 37 &≡ 3 (mod 7).
b) 66 − 3 mod 7 = 63 mod 7 = 0, so 66 ≡ 3 (mod 7).
c) −17 − 3 mod 7 = −20 mod 7 = 1 &= 0, so −17 &≡ 3 (mod 7).
d) −67 − 3 mod 7 = −70 mod 7 = 0, so −67 ≡ 3 (mod 7).

30. a) (177 mod 31 + 270 mod 31) mod 31 = (22 + 22) mod 31 = 44 mod 31 = 13
b) (177 mod 31 · 270 mod 31) mod 31 = (22 · 22) mod 31 = 484 mod 31 = 19

32. a) (192 mod 41) mod 9 = (361 mod 41) mod 9 = 33 mod 9 = 6
b) (323 mod 13)2 mod 11 = (32768 mod 13)2 mod 11 = 82 mod 11 = 64 mod 11 = 9
c) (73 mod 23)2 mod 31 = (343 mod 23)2 mod 31 = 212 mod 31 = 441 mod 31 = 7
d) (212 mod 15)3 mod 22 = (441 mod 15)3 mod 22 = 63 mod 22 = 216 mod 22 = 18

34. From a ≡ b (mod m) we know that b = a + sm for some integer s . Similarly, d = c + tm . Subtracting, we
have b− d = (a− c) + (s− t)m , which means that a− c ≡ b− d (mod m).

36. From a ≡ b (mod m) we know that b = a+sm for some integer s . Multiplying by c we have bc = ac+s(mc),
which means that ac ≡ bc (mod mc).
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38. There are two cases. If n is even, then n = 2k for some integer k , so n2 = 4k2 , which means that
n2 ≡ 0 (mod 4). If n is odd, then n = 2k+1 for some integer k , so n2 = 4k2 +4k+1 = 4(k2 + k)+1, which
means that n2 ≡ 1 (mod 4).

40. Write n = 2k + 1 for some integer k . Then n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1. Since either k or
k + 1 is even, 4k(k + 1) is a multiple of 8. Therefore n2 − 1 is a multiple of 8, so n2 ≡ 1 (mod 8).

42. The closure property states that a +m b ∈ Zm whenever a, b ∈ Zm . Recall that Zm = {0, 1, 2, . . . ,m−1} and
that a +m b is defined to be (a + b) mod m . But this last expression will by definition be an integer in the
desired range. To see that addition in Zm is associative, we must show that (a +m b) +m c = a +m (b +m c).
This is equivalent to

((a + b mod m) + c) mod m = (a + (b + c mod m)) mod m.

This is true, because both sides equal (a+b+c) mod m , addition of integers is associative. Similarly, addition
in Zm is commutative because addition in Z is commutative, and 0 is the additive identity for Zm because
0 is the additive identity for Z . Finally, to see that m − a is an inverse of a modulo m , we just note that
(m− a) +m a = m− a+ a mod m = 0. (It is also worth observing that 0 is its own additive inverse in Zm .)

44. The distributive property of multiplication over addition states that a ·m (b +m c) = (a ·m b) +m (a ·m c)
whenever a, b, c ∈ Zm . By the definition of these modular operations and Corollary 2, the left-hand side equals
a(b + c) mod m and the right-hand side equals ab + ac mod m . These are equal because multiplication is
distributive over addition for integers.

46. We will use + and · for these operations to save space and improve the appearance of the table. Notice
that we really can get by with a little more than half of this table if we observe that these operations are
commutative; thus it would suffice to list a + b and a · b only for a ≤ b .

0 + 0 = 0 0 + 1 = 1 0 + 2 = 2 0 + 3 = 3 0 + 4 = 4 0 + 5 = 5

1 + 0 = 1 1 + 1 = 2 1 + 2 = 3 1 + 3 = 4 1 + 4 = 5 1 + 5 = 0

2 + 0 = 2 2 + 1 = 3 2 + 2 = 4 2 + 3 = 5 2 + 4 = 0 2 + 5 = 1

3 + 0 = 3 3 + 1 = 4 3 + 2 = 5 3 + 3 = 0 3 + 4 = 1 3 + 5 = 2

4 + 0 = 4 4 + 1 = 5 4 + 2 = 0 4 + 3 = 1 4 + 4 = 2 4 + 5 = 3

5 + 0 = 5 5 + 1 = 0 5 + 2 = 1 5 + 3 = 2 5 + 4 = 3 5 + 5 = 4

0 · 0 = 0 0 · 1 = 0 0 · 2 = 0 0 · 3 = 0 0 · 4 = 0 0 · 5 = 0

1 · 0 = 0 1 · 1 = 1 1 · 2 = 2 1 · 3 = 3 1 · 4 = 4 1 · 5 = 5

2 · 0 = 0 2 · 1 = 2 2 · 2 = 4 2 · 3 = 0 2 · 4 = 2 2 · 5 = 4

3 · 0 = 0 3 · 1 = 3 3 · 2 = 0 3 · 3 = 3 3 · 4 = 0 3 · 5 = 3

4 · 0 = 0 4 · 1 = 4 4 · 2 = 2 4 · 3 = 0 4 · 4 = 4 4 · 5 = 2

5 · 0 = 0 5 · 1 = 5 5 · 2 = 4 5 · 3 = 3 5 · 2 = 2 5 · 5 = 1
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SECTION 4.2 Integer Representations and Algorithms
2. To convert from decimal to binary, we successively divide by 2. We write down the remainders so obtained

from right to left; that is the binary representation of the given number.
a) Since 321/2 is 160 with a remainder of 1, the rightmost digit is 1. Then since 160/2 is 80 with a remainder
of 0, the second digit from the right is 0. We continue in this manner, obtaining successive quotients of 40,
20, 10, 5, 2, 1, and 0, and remainders of 0, 0, 0, 0, 1, 0, and 1. Putting all these remainders in order
from right to left we obtain (1 0100 0001)2 as the binary representation. We could, as a check, expand this
binary numeral: 20 + 26 + 28 = 1 + 64 + 256 = 321.
b) We could carry out the same process as in part (a). Alternatively, we might notice that 1023 = 1024−1 =
210−1. Therefore the binary representation is 1 less than (100 0000 0000)2 , which is clearly (11 1111 1111)2 .
c) If we carry out the divisions by 2, the quotients are 50316, 25158, 12579, 6289, 3144, 1572, 786, 393,
196, 98, 49, 24, 12, 6, 3, 1, and 0, with remainders of 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, and
1. Putting the remainders in order from right to left we have (1 1000 1001 0001 1000)2 .

4. a) 1 + 2 + 8 + 16 = 27 b) 1 + 4 + 16 + 32 + 128 + 512 = 693
c) 2 + 4 + 8 + 16 + 32 + 128 + 256 + 512 = 958
d) 1 + 2 + 4 + 8 + 16 + 1024 + 2048 + 4096 + 8192 + 16384 = 31775

6. We follow the procedure of Example 7.
a) (1111 0111)2 = (011 110 111)2 = (367)8
b) (1010 1010 1010)2 = (101 010 101 010)2 = (5252)8
c) (111 0111 0111 0111)2 = (111 011 101 110 111)2 = (73567)8
d) (101 0101 0101 0101)2 = (101 010 101 010 101)2 = (52525)8

8. Following Example 7, we simply write the binary equivalents of each digit. Since (A)16 = (1010)2 , (B)16 =
(1011)2 , (C)16 = (1100)2 , (D)16 = (1101)2 , (E)16 = (1110)2 , and (F)16 = (1111)2 , we have (BADFACED)16
= (10111010110111111010110011101101)2 . Following the convention shown in Exercise 3 of grouping binary
digits by fours, we can write this in a more readable form as 1011 1010 1101 1111 1010 1100 1110 1101.

10. We follow the procedure of Example 7.
a) (1111 0111)2 = (F7)16 b) (1010 1010 1010)2 = (AAA)16
c) (111 0111 0111 0111)2 = (7777)16 d) (101 0101 0101 0101)2 = (5555)16

12. Following Example 7, we simply write the hexadecimal equivalents of each group of four binary digits.
Note that we group from the right, so the left-most group, which is just 1, becomes 0001. Thus we have
(0001 1000 0110 0011)2 = (1863)16 .

14. Let (. . . h2h1h0)16 be the hexadecimal expansion of a positive integer. The value of that integer is, therefore,
h0 + h1 · 16 + h2 · 162 + · · · = h0 + h1 · 24 + h2 · 28 + · · · . If we replace each hexadecimal digit hi by
its binary expansion (bi3bi2bi1bi0)2 , then hi = bi0 + 2bi1 + 4bi2 + 8bi3 . Therefore the value of the entire
number is b00 + 2b01 + 4b02 + 8b03 + (b10 + 2b11 + 4b12 + 8b13) · 24 + (b20 + 2b21 + 4b22 + 8b23) · 28 + · · · =
b00 + 2b01 + 4b02 + 8b03 + 24b10 + 25b11 + 26b12 + 27b13 + 28b20 + 29b21 + 210b22 + 211b23 + · · · , which is the
value of the binary expansion (. . . b23b22b21b20b13b12b11b10b03b02b01b00)2 .

16. Let (. . . d2d1d0)8 be the octal expansion of a positive integer. The value of that integer is, therefore, d0 + d1 ·
8+d2 ·82 + · · · = d0 +d1 ·23 +d2 ·26 + · · · . If we replace each octal digit di by its binary expansion (bi2bi1bi0)2 ,
then di = bi0 + 2bi1 + 4bi2 . Therefore the value of the entire number is b00 + 2b01 + 4b02 + (b10 + 2b11 + 4b12) ·
23 + (b20 + 2b21 + 4b22) · 26 + · · · = b00 + 2b01 + 4b02 + 23b10 + 24b11 + 25b12 + 26b20 + 26b21 + 28b22 + · · · , which
is the value of the binary expansion (. . . b22b21b20b12b11b10b02b01b00)2 .
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18. Since we have procedures for converting both octal and hexadecimal to and from binary (Example 7), to
convert from hexadecimal to octal, we first convert from hexadecimal to binary and then convert from binary
to octal.

20. Note that 64 = 26 = 82 . In base 64 we need 64 symbols, from 0 up to something representing 63 (maybe we
could use, for example, digits up to 9, then lower and upper case letters from a to Z, and finally symbols @
and $ to represent 62 and 63). Corresponding to each such symbol would be a binary string of six digits, from
000000 for 0, through 001010 for a, 100011 for z, 100100 for A, 111101 for Z, 111110 for @, and 111111
for $. To translate from binary to base 64, we group the binary digits from the right in groups of 6 and use
the list of correspondences to replace each six bits by one base-64 digit. To convert from base 64 to binary,
we just replace each base-64 digit by its corresponding six bits.

For conversions between octal and base 64, we change the binary strings in our table to octal strings,
replacing each 6-bit string by its 2-digit octal equivalent, and then follow the same procedures as above,
interchanging base-64 digits and 2-digit strings of octal digits.

22. We can just add and multiply using the grade-school algorithms (working column by column starting at the
right), using the addition and multiplication tables in base three (for example, 2 + 1 = 10 and 2 · 2 = 11).
When a digit-by-digit answer is too large to fit (i.e., greater than 2), we “carry” into the next column. Note
that we can check our work by converting everything to decimal numerals (the check is shown in parentheses
below). A calculator or computer algebra system makes doing the conversions tolerable. For convenience, we
leave off the “3” subscripts throughout.
a) 112 + 210 = 1022 (decimal: 14 + 21 = 35)

112 · 210 = 101,220 (decimal: 14 · 21 = 294)
b) 2112 + 12021 = 21,210 (decimal: 68 + 142 = 210)

2112 · 12021 = 111,020,122 (decimal: 68 · 142 = 9656)
c) 20001 + 1111 = 21,112 (decimal: 163 + 40 = 203)

20001 · 1111 = 22,221,111 (decimal: 163 · 40 = 6520)
d) 120021 + 2002 = 122,100 (decimal: 412 + 56 = 468)

120021 · 2002 = 1,011,122,112 (decimal: 412 · 56 = 23,072)

24. We can just add and multiply using the grade-school algorithms (working column by column starting at the
right), using the addition and multiplication tables in base sixteen (for example, 7 + 8 = F and 7 · 8 = 38).
When a digit-by-digit answer is too large to fit (i.e., greater than F), we “carry” into the next column. Note
that we can check our work by converting everything to decimal numerals (the check is shown in parentheses
below). A calculator or computer algebra system makes doing the conversions tolerable, specially if we use
built-in functions for doing so. For convenience, we leave off the “16” subscripts throughout.
a) 1AB + BBC = D67 (decimal: 427 + 3004 = 3431)

1AB · BBC = 139,294 (decimal: 427 · 3004 = 1,282,708)
b) 20CBA + A01 = 21,6BB (decimal: 134,330 + 2561 = 136,891)

20CBA · A01 = 14,815,0BA (decimal: 134,330 · 2561 = 344,019,130)
c) ABCDE + 1111 = AC,DEF (decimal: 703,710 + 4369 = 708,079)

ABCDE · 1111 = B7,414,8BE (decimal: 703,710 · 4369 = 3,074,508,990)
d) E0000E + BAAA = E0B,AB8 (decimal: 14,680,078 + 47,786 = 14,727,864)

E0000E · BAAA = A,354,CA3,54C (decimal: 14,680,078 · 47,786 = 701,502,207,308)

26. In effect, this algorithm computes 11 mod 645, 112 mod 645, 114 mod 645, 118 mod 645, 1116 mod 645,
. . . , and then multiplies (modulo 645) the required values. Since 644 = (1010000100)2 , we need to multiply
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together 114 mod 645, 11128 mod 645, and 11512 mod 645, reducing modulo 645 at each step. We compute
by repeatedly squaring: 112 mod 645 = 121, 114 mod 645 = 1212 mod 645 = 14641 mod 645 = 451,
118 mod 645 = 4512 mod 645 = 203401 mod 645 = 226, 1116 mod 645 = 2262 mod 645 = 51076 mod 645 =
121. At this point we notice that 121 appeared earlier in our calculation, so we have 1132 mod 645 =
1212 mod 645 = 451, 1164 mod 645 = 4512 mod 645 = 226, 11128 mod 645 = 2262 mod 645 = 121,
11256 mod 645 = 451, and 11512 mod 645 = 226. Thus our final answer will be the product of 451, 121, and
226, reduced modulo 645. We compute these one at a time: 451 ·121 mod 645 = 54571 mod 645 = 391, and
391 · 226 mod 645 = 88366 mod 645 = 1. So 11644 mod 645 = 1. A computer algebra system will verify
this; use the command “1 &^ 644 mod 645;” in Maple, for example. The ampersand here tells Maple to use
modular exponentiation, rather than first computing the integer 11644 , which has over 600 digits, although
it could certainly handle this if asked. The point is that modular exponentiation is much faster and avoids
having to deal with such large numbers.

28. In effect this algorithm computes powers 123 mod 101, 1232 mod 101, 1234 mod 101, 1238 mod 101,
12316 mod 101, . . . , and then multiplies (modulo 101) the required values. Since 1001 = (1111101001)2 , we
need to multiply together 123 mod 101, 1238 mod 101, 12332 mod 101, 12364 mod 101, 123128 mod 101,
123256 mod 101, and 123512 mod 101, reducing modulo 101 at each step. We compute by repeatedly
squaring: 123 mod 101 = 22, 1232 mod 101 = 222 mod 101 = 484 mod 101 = 80, 1234 mod 101 =
802 mod 101 = 6400 mod 101 = 37, 1238 mod 101 = 372 mod 101 = 1369 mod 101 = 56, 12316 mod 101 =
562 mod 101 = 3136 mod 101 = 5, 12332 mod 101 = 52 mod 101 = 25, 12364 mod 101 = 252 mod 101 =
625 mod 101 = 19, 123128 mod 101 = 192 mod 101 = 361 mod 101 = 58, 123256 mod 101 = 582 mod 101 =
3364 mod 101 = 31, and 123512 mod 101 = 312 mod 101 = 961 mod 101 = 52. Thus our final answer will
be the product of 22, 56, 25, 19, 58, 31, and 52. We compute these one at a time modulo 101: 22 · 56 is
20, 20 · 25 is 96, 96 · 19 is 6, 6 · 58 is 45, 45 · 31 is 82, and finally 82 · 52 is 22. So 1231001 mod 101 = 22.

30. a) 5 = 9 − 3 − 1 b) 13 = 9 + 3 + 1 c) 37 = 27 + 9 + 1 d) 79 = 81 − 3 + 1

32. The key fact here is that 10 ≡ −1 (mod 11), and so 10k ≡ (−1)k (mod 11). Thus 10k is congruent to 1 if k is
even and to −1 if k is odd. Let the decimal expansion of the integer a be given by (an−1an−2 . . . a3a2a1a0)10 .
Thus a = 10n−1an−1 + 10n−2an−2 + · · · + 10a1 + a0 . Since 10k ≡ (−1)k (mod 11), we have a ≡ ±an−1 ∓
an−2 + · · · − a3 + a2 − a1 + a0 (mod 11), where signs alternate and depend on the parity of n . Therefore
a ≡ 0 (mod 11) if and only if (a0 + a2 + a4 + · · ·) − (a1 + a3 + a5 + · · ·), which we obtain by collecting the
odd and even indexed terms, is congruent to 0 (mod 11). Since being divisible by 11 is the same as being
congruent to 0 (mod 11), we have proved that a positive integer is divisible by 11 if and only if the sum of
its decimal digits in even-numbered positions minus the sum of its decimal digits in odd-numbered positions
is divisible by 11.

34. a) Since the binary representation of 22 is 10110, the six bit one’s complement representation is 010110.
b) Since the binary representation of 31 is 11111, the six bit one’s complement representation is 011111.
c) Since the binary representation of 7 is 111, we complement 000111 to obtain 111000 as the one’s comple-
ment representation of −7.
d) Since the binary representation of 19 is 10011, we complement 010011 to obtain 101100 as the one’s
complement representation of −19.

36. Every 1 is changed to a 0, and every 0 is changed to a 1.

38. We just combine the two ideas in Exercises 36 and 37: to form a− b , we compute a+(−b), using Exercise 36
to find −b and Exercise 37 to find the sum.
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40. Following the definition, we find the two’s complement expansion of a positive number simply by representing it
in binary, using six bits; and we find the two’s complement expansion of a negative number −x by representing
25 − x in binary using five bits and preceding it with a 1.
a) Since 22 is positive, and its binary expansion is 10110, the answer is 010110.
b) Since 31 is positive, and its binary expansion is 11111, the answer is 011111.
c) Since −7 is negative, we first find the 5-bit binary expansion of 25 − 7 = 25, namely 11001, and precede
it by a 1, obtaining 111001.
d) Since −19 is negative, we first find the 5-bit binary expansion of 25 − 19 = 13, namely 01101, and precede
it by a 1, obtaining 101101.

42. We can experiment a bit to find a convenient algorithm. We saw in Exercise 40 that the expansion of −7
is 111001, while of course the expansion of 7 is 000111. Apparently to find the expansion of −m from that
of m we complement each bit and then add 1, working in base 2. Similarly, the expansion of −8 is 111000,
whereas the expansion of 8 is 001000; again 110111 + 1 = 111000. At the extremes (using six bits) we have
1 represented by 000001, so −1 is represented by 111110 + 1 = 111111; and 31 is represented by 011111, so
−31 is represented by 100000 + 1 = 100001.

44. We just combine the two ideas in Exercises 42 and 43. To form a− b , we compute a+(−b), using Exercise 42
to find −b and Exercise 43 to find the sum.

46. If the number is positive (i.e., the left-most bit is 0), then the expansions are the same. If the number is
negative (i.e., the left-most bit is 1), then we take the one’s complement representation and add 1, working
in base 2. For example, the one’s complement representation of −19 using six bits is, from Exercise 34,
101100. Adding 1 we obtain 101101, which is the two’s complement representation of −19 using six bits, from
Exercise 40.

48. We obtain these expansions from the top down. For example in part (e) we compute that 7! > 1000 but
6! ≤ 1000, so the highest factorial appearing is 6! = 720. We use the division algorithm to find the quotient
and remainder when 1000 is divided by 720, namely 1 and 280, respectively. Therefore the expansion begins
1 · 6! and continues with the expansion of 280, which we find in the same manner.
a) 2 = 2! b) 7 = 3! + 1! c) 19 = 3 · 3! + 1! d) 87 = 3 · 4! + 2 · 3! + 2! + 1!
e) 1000 = 6!+2 ·5!+4!+2 ·3!+2 ·2! f) 1000000 = 2 · 9! + 6 · 8! + 6 · 7! + 2 · 6! + 5 · 5! + 4! + 2 · 3! + 2 · 2!

50. The algorithm is essentially the same as the usual grade-school algorithm for adding. We add from right to
left, one column at a time, carrying to the next column if necessary. A carry out of the column representing i!
is needed whenever the sum obtained for that column is greater than i , in which case we subtract i+ 1 from
that digit and carry 1 into the next column (since (i + 1)! = (i + 1) · i!).

52. The partial products are 11100 and 1110000, namely 1110 shifted one place and three places to the left. We
add these two numbers, obtaining 10001100.

54. Subtraction is really just like addition, so the number of bit operations should be comparable, namely O(n).
More specifically, if we analyze the algorithm for Exercise 53, we see that the loop is executed n times, and
only a few operations are performed during each pass.

56. In the worst case, each bit of a has to be compared to each bit of b , so O(n) comparisons are needed. An
exact analysis of the procedure given in the solution to Exercise 55 shows that n + 1 comparisons of bits are
needed in the worst case, assuming that the logical “and” condition in the while loop is evaluated efficiently
from left to right (so that a0 is not compared to b0 there).
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58. A multiplication modulo m consists of multiplying two integers, each at most logm bits long (since they
are less than m), followed by a division by m , which is also logm bits long. Thus this takes (logm)2 bit
operations by Example 11 and the analysis of Algorithm 4 mentioned in the text. This is what goes on inside
the loop of Algorithm 5. The loop is iterated logn times. Therefore the total number of bit operations is
O((logm)2 log n).

SECTION 4.3 Primes and Greatest Common Divisors
2. The numbers 19, 101, 107, and 113 are prime, as we can verify by trial division. The numbers 27 = 33 and

93 = 3 · 31 are not prime.

4. We obtain the answers by trial division. The factorizations are 39 = 3 · 13, 81 = 34 , 101 = 101 (prime),
143 = 11 · 13, 289 = 172 , and 899 = 29 · 31.

6. A 0 appears at the end of a number for every factor of 10 (= 2 · 5) the number has. Now 100! certainly has
more factors of 2 than it has factors of 5, so the number of factors of 10 it has is the same as the number of
factors of 5. Each of the twenty numbers 5, 10, 15, . . . , 100 contributes a factor of 5 to 100! , and in addition
the four numbers 25, 50, 75, and 100 contribute one more factor of 5. Therefore there are 24 factors of 5
in 100! , so 100! ends in exactly 24 0’s.

8. The input is a positive integer n . We successively look for small factors d (starting with d = 2 and incre-
menting d once we know that d is no longer a factor of what remains), which will necessarily be prime. When
we find a factor, we divide out by that factor and keep going. We will print the factors as we find them.
(Alternatively, they could be stored in a list of some sort.) We stop when the remaining number is 1 (all
factors have been found). The pseudocode below accomplishes this. Notice that we could be a little more
sophisticated and use only prime trial divisors, but it hardly seems worth the effort, since it would take time
to see which trial divisors are prime. Alternatively, we could handle d = 2 by itself and then loop through
only odd values of d , starting at 3 and incrementing by 2.

procedure factorization(n : positive integer)
d := 2
while n > 1

if n mod d = 0 then
print d
n := n/d

else
d := d + 1

10. We first establish the identity in the hint. If we let y = xk , then the claimed identity is

(yt + 1) = (y + 1)(yt−1 − yt−2 + yt−3 − · · ·− y + 1) ,

which is easily seen to be true by multiplying out the right-hand side and noticing the “telescoping” that
occurs. We want to show that m is a power of 2, i.e., that its only prime factor is 2. Suppose to the contrary
that m has an odd prime factor t and write m = kt , where k is a positive integer. Letting x = 2 in the
identity given in the hint, we have 2m + 1 = (2k + 1)(the other factor). Because 2k + 1 > 1 and the prime
2m + 1 can have no proper factor greater than 1, we must have 2m + 1 = 2k + 1, so m = k and t = 1,
contradicting the fact that t is prime. This completes the proof by contradiction.
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12. We follow the hint. There are n numbers in the sequence (n + 1)! + 2, (n + 1)! + 3, (n + 1)! + 4, . . . ,
(n+ 1)! + (n+ 1). The first of these is composite because it is divisible by 2; the second is composite because
it is divisible by 3; the third is composite because it is divisible by 4; . . . ; the last is composite because it is
divisible by n + 1. This gives us the desired n consecutive composite integers.

14. We must find, by inspection with mental arithmetic, the greatest common divisors of the numbers from 1 to
11 with 12, and list those whose gcd is 1. These are 1, 5, 7, and 11. There are so few since 12 had many
factors—in particular, both 2 and 3.

16. Since these numbers are small, the easiest approach is to find the prime factorization of each number and look
for any common prime factors.
a) Since 21 = 3 · 7, 34 = 2 · 17, and 55 = 5 · 11, these are pairwise relatively prime.
b) Since 85 = 5 · 17, these are not pairwise relatively prime.
c) Since 25 = 52 , 41 is prime, 49 = 72 , and 64 = 26 , these are pairwise relatively prime.
d) Since 17, 19, and 23 are prime and 18 = 2 · 32 , these are pairwise relatively prime.

18. a) Since 6 = 1 + 2 + 3, and these three summands are the only proper divisors of 6, we conclude that 6 is
perfect. Similarly 28 = 1 + 2 + 4 + 7 + 14.
b) We need to find all the proper divisors of 2p−1(2p − 1). Certainly all the numbers 1, 2, 4, 8, . . . , 2p−1

are proper divisors, and their sum is 2p − 1 (this is a geometric series). Also each of these divisors times
2p − 1 is also a divisor, and all but the last is proper. Again adding up this geometric series we find a sum
of (2p − 1)(2p−1 − 1). There are no other other proper divisors. Therefore the sum of all the divisors is
(2p − 1) + (2p − 1)(2p−1 − 1) = (2p − 1)(1 + 2p−1 − 1) = (2p − 1)2p−1 , which is our original number. Therefore
this number is perfect.

20. We need to find a factor if there is one, or else check all possible prime divisors up to the square root of the
given number to verify that there is no nontrivial divisor.
a) 27 − 1 = 127. Division by 2, 3, 5, 7, and 11 shows that these are not factors. Since

√
127 < 13, we are

done; 127 is prime.
b) 29 − 1 = 511 = 7 · 73, so this number is not prime.
c) 211 − 1 = 2047 = 23 · 89, so this number is not prime.
d) 213 − 1 = 8191. Division by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, and 89 (phew!) shows that these are not factors. Since

√
8191 < 97, we are done; 8191 is prime.

22. Certainly if n is prime, then all the integers from 1 to n− 1 are less than or equal to n and relatively prime
to n , but no others are, so φ(n) = n − 1. Conversely, suppose that n is not prime. If n = 1, then we have
φ(1) = 1 &= 1 − 1. If n > 1, then n = ab with 1 < a < n and 1 < b < n . Note that neither a nor b is
relatively prime to n . Therefore the number of positive integers less than or equal to n and relatively prime
to n is at most n− 3 (since a , b , and n are not in this collection), so φ(n) &= n− 1.

24. We form the greatest common divisors by finding the minimum exponent for each prime factor.
a) 22 · 33 · 52 b) 2 · 3 · 11 c) 17 d) 1 e) 5 f) 2 · 3 · 5 · 7

26. We form the least common multiples by finding the maximum exponent for each prime factor.
a) 25 · 33 · 55 b) 211 · 39 · 5 · 7 · 11 · 13 · 1714 c) 1717 d) 22 · 53 · 7 · 13
e) undefined (0 is not a positive integer) f) 2 · 3 · 5 · 7

28. We have 1000 = 23 · 53 and 625 = 54 , so gcd(1000, 625) = 53 = 125, and lcm(1000, 625) = 23 · 54 = 5000. As
expected, 125 · 5000 = 625000 = 1000 · 625.
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30. By Exercise 31 we know that the product of the greatest common divisor and the least common multiple of two
numbers is the product of the two numbers. Therefore the answer is (27 ·38 ·52 ·711)/(23 ·34 ·5) = 24 ·34 ·5 ·711 .

32. To apply the Euclidean algorithm, we divide the larger number by the smaller, replace the larger by the smaller
and the smaller by the remainder of this division, and repeat this process until the remainder is 0. At that
point, the smaller number is the greatest common divisor.
a) gcd(1, 5) = gcd(1, 0) = 1 b) gcd(100, 101) = gcd(100, 1) = gcd(1, 0) = 1
c) gcd(123, 277) = gcd(123, 31) = gcd(31, 30) = gcd(30, 1) = gcd(1, 0) = 1
d) gcd(1529, 14039) = gcd(1529, 278) = gcd(278, 139) = gcd(139, 0) = 139
e) gcd(1529, 14038) = gcd(1529, 277) = gcd(277, 144) = gcd(144, 133) = gcd(133, 11) = gcd(11, 1) = gcd(1, 0)
= 1
f) gcd(11111, 111111) = gcd(11111, 1) = gcd(1, 0) = 1

34. We need to divide successively by 34, 21, 13, 8, 5, 3, 2, and 1, so eight divisions are required.

36. The statement we are asked to prove involves the result of dividing 2a − 1 by 2b − 1. Let us actually carry
out that division algebraically—long division of these expressions. The leading term in the quotient is 2a−b

(as long as a ≥ b), with a remainder at that point of 2a−b − 1. If now a − b ≥ b then the next step
in the long division produces the next summand in the quotient, 2a−2b , with a remainder at this stage of
2a−2b − 1. This process of long division continues until the remainder at some stage is less than the divisor,
i.e., 2a−kb − 1 < 2b − 1. But then the remainder is 2a−kb − 1, and clearly a − kb is exactly a mod b . This
completes the proof.

38. By Exercise 37, 2a − 1 and 2b − 1 are relatively prime precisely when 2gcd(a,b) − 1 = 1, which happens if and
only if gcd(a, b) = 1. Thus it is enough to check here that 35, 34, 33, 31, 29, and 23 are relatively prime.
This is clear, since the prime factorizations are, respectively, 35, 2 · 17, 3 · 11, 31, 29, and 23.

40. a) In order to find the coefficients s and t such that 9s + 11t = gcd(9, 11), we carry out the steps of the
Euclidean algorithm.

11 = 9 + 2

9 = 4 · 2 + 1

Then we work up from the bottom, expressing the greatest common divisor (which we have just seen to be 1)
in terms of the numbers involved in the algorithm, namely 11, 9, and 2. In particular, the last equation tells
us that 1 = 9− 4 · 2, so that we have expressed the gcd as a linear combination of 9 and 2. But now the first
equation tells us that 2 = 11 − 9; we plug this into our previous equation and obtain

1 = 9 − 4 · (11 − 9) = 5 · 9 − 4 · 11 .

Thus we have expressed 1 as a linear combination (with integer coefficients) of 9 and 11, namely gcd(9, 11) =
5 · 9 − 4 · 11.
b) Again, we carry out the Euclidean algorithm. Since 44 = 33+11, and 11 | 33, we know that gcd(33, 44) =
11. From the equation shown here, we can immediately write 11 = (−1) · 33 + 44.
c) The calculation of the greatest common divisor takes several steps:

78 = 2 · 35 + 8

35 = 4 · 8 + 3

8 = 2 · 3 + 2

3 = 2 + 1
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Then we need to work our way back up, successively plugging in for the remainders determined in this
calculation:

1 = 3 − 2

= 3 − (8 − 2 · 3) = 3 · 3 − 8

= 3 · (35 − 4 · 8) − 8 = 3 · 35 − 13 · 8
= 3 · 35 − 13 · (78 − 2 · 35) = 29 · 35 − 13 · 78

d) Here are the two calculations—down to the gcd using the Euclidean algorithm, and then back up by
substitution until we have expressed the gcd as the desired linear combination of the original numbers.

55 = 2 · 21 + 13

21 = 13 + 8

13 = 8 + 5

8 = 5 + 3

5 = 3 + 2

3 = 2 + 1

Thus the greatest common divisor is 1.

1 = 3 − 2

= 3 − (5 − 3) = 2 · 3 − 5

= 2 · (8 − 5) − 5 = 2 · 8 − 3 · 5
= 2 · 8 − 3 · (13 − 8) = 5 · 8 − 3 · 13

= 5 · (21 − 13) − 3 · 13 = 5 · 21 − 8 · 13

= 5 · 21 − 8 · (55 − 2 · 21) = 21 · 21 − 8 · 55

e) We compute the greatest common divisor in one step: 203 = 2 · 101 + 1. Therefore we have 1 =
(−2) · 101 + 203.
f) We compute the greatest common divisor using the Euclidean algorithm:

323 = 2 · 124 + 75

124 = 75 + 49

75 = 49 + 26

49 = 26 + 23

26 = 23 + 3

23 = 7 · 3 + 2

3 = 2 + 1

Thus the greatest common divisor is 1.

1 = 3 − 2

= 3 − (23 − 7 · 3) = 8 · 3 − 23

= 8 · (26 − 23) − 23 = 8 · 26 − 9 · 23

= 8 · 26 − 9 · (49 − 26) = 17 · 26 − 9 · 49

= 17 · (75 − 49) − 9 · 49 = 17 · 75 − 26 · 49

= 17 · 75 − 26 · (124 − 75) = 43 · 75 − 26 · 124

= 43 · (323 − 2 · 124) − 26 · 124 = 43 · 323 − 112 · 124
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g) Here are the two calculations—down to the gcd using the Euclidean algorithm, and then back up by
substitution until we have expressed the gcd as the desired linear combination of the original numbers.

2339 = 2002 + 337

2002 = 5 · 337 + 317

337 = 317 + 20

317 = 15 · 20 + 17

20 = 17 + 3

17 = 5 · 3 + 2

3 = 2 + 1

Thus the greatest common divisor is 1.

1 = 3 − 2

= 3 − (17 − 5 · 3) = 6 · 3 − 17

= 6 · (20 − 17) − 17 = 6 · 20 − 7 · 17

= 6 · 20 − 7 · (317 − 15 · 20) = 111 · 20 − 7 · 317

= 111 · (337 − 317) − 7 · 317 = 111 · 337 − 118 · 317

= 111 · 337 − 118 · (2002 − 5 · 337) = 701 · 337 − 118 · 2002

= 701 · (2339 − 2002) − 118 · 2002 = 701 · 2339 − 819 · 2002

h) The procedure is the same:
4669 = 3457 + 1212

3457 = 2 · 1212 + 1033

1212 = 1033 + 179

1033 = 5 · 179 + 138

179 = 138 + 41

138 = 3 · 41 + 15

41 = 2 · 15 + 11

15 = 11 + 4

11 = 2 · 4 + 3

4 = 3 + 1

Thus the greatest common divisor is 1.

1 = 4 − 3

= 4 − (11 − 2 · 4) = 3 · 4 − 11

= 3 · (15 − 11) − 11 = 3 · 15 − 4 · 11

= 3 · 15 − 4 · (41 − 2 · 15) = 11 · 15 − 4 · 41

= 11 · (138 − 3 · 41) − 4 · 41 = 11 · 138 − 37 · 41

= 11 · 138 − 37 · (179 − 138) = 48 · 138 − 37 · 179

= 48 · (1033 − 5 · 179) − 37 · 179 = 48 · 1033 − 277 · 179

= 48 · 1033 − 277 · (1212 − 1033) = 325 · 1033 − 277 · 1212

= 325 · (3457 − 2 · 1212) − 277 · 1212 = 325 · 3457 − 927 · 1212

= 325 · 3457 − 927 · (4669 − 3457) = 1252 · 3457 − 927 · 4669
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i) The procedure is the same:
13422 = 10001 + 3421

10001 = 2 · 3421 + 3159

3421 = 3159 + 262

3159 = 12 · 262 + 15

262 = 17 · 15 + 7

15 = 2 · 7 + 1

Thus the greatest common divisor is 1.

1 = 15 − 2 · 7
= 15 − 2 · (262 − 17 · 15) = 35 · 15 − 2 · 262

= 35 · (3159 − 12 · 262) − 2 · 262 = 35 · 3159 − 422 · 262

= 35 · 3159 − 422 · (3421 − 3159) = 457 · 3159 − 422 · 3421

= 457 · (10001 − 2 · 3421) − 422 · 3421 = 457 · 10001 − 1336 · 3421

= 457 · 10001 − 1336 · (13422 − 10001) = 1793 · 10001 − 1336 · 13422

42. We take a = 356 and b = 252 to avoid a needless first step. When we apply the Euclidean algorithm we
obtain the following quotients and remainders: q1 = 1, r2 = 104, q2 = 2, r3 = 44, q3 = 2, r4 = 16, q4 = 2,
r5 = 12, q5 = 1, r6 = 4, q6 = 3. Note that n = 6. Thus we compute the successive s’s and t’s as follows,
using the given recurrences:
s2 = s0 − q1s1 = 1 − 1 · 0 = 1, t2 = t0 − q1t1 = 0 − 1 · 1 = −1
s3 = s1 − q2s2 = 0 − 2 · 1 = −2, t3 = t1 − q2t2 = 1 − 2 · (−1) = 3
s4 = s2 − q3s3 = 1 − 2 · (−2) = 5, t4 = t2 − q3t3 = −1 − 2 · 3 = −7
s5 = s3 − q4s4 = −2 − 2 · 5 = −12, t5 = t3 − q4t4 = 3 − 2 · (−7) = 17
s6 = s4 − q5s5 = 5 − 1 · (−12) = 17, t6 = t4 − q5t5 = −7 − 1 · 17 = −24

Thus we have s6a + t6b = 17 · 356 + (−24) · 252 = 4, which is gcd(356, 252).

44. We take a = 100001 and b = 1001 to avoid a needless first step. When we apply the Euclidean algorithm we
obtain the following quotients and remainders: q1 = 99, r2 = 902, q2 = 1, r3 = 99, q3 = 9, r4 = 11, q4 = 9.
Note that n = 4. Thus we compute the successive s’s and t’s as follows, using the given recurrences:
s2 = s0 − q1s1 = 1 − 99 · 0 = 1, t2 = t0 − q1t1 = 0 − 99 · 1 = −99
s3 = s1 − q2s2 = 0 − 1 · 1 = −1, t3 = t1 − q2t2 = 1 − 1 · (−99) = 100
s4 = s2 − q3s3 = 1 − 9 · (−1) = 10, t4 = t2 − q3t3 = −99 − 9 · 100 = −999

Thus we have s4a + t4b = 10 · 100001 + (−999) · 1001 = 11, which is gcd(100001, 1001).

46. The number of (positive) factors that a positive integer n has can be determined from the prime factorization
of n . If we write this prime factorization as n = pe11 pe22 · · · perr , then there are (e1 + 1)(e2 + 1) · · · (er + 1)
different factors. This follows from the ideas in Chapter 6. Specifically, in choosing a factor we can choose
0, 1, 2, . . . , e1 of the p1 factors, a total of e1 + 1 choices; for each of these there are e2 + 1 choices as to
how many p2 factors to include, and so on. If we don’t want to go through the analysis using the ideas given
below, we could simply compute the number of factors for each n , starting at 1 (perhaps using a computer
program), and thereby obtain the answers by “brute force.”
a) If an integer is to have exactly three different factors (we assume “positive factors” is intended here), then
n must be the square of a prime number; that is the only way to make (e1 + 1)(e2 + 1) · · · (er + 1) = 3. The
smallest prime number is 2. So the smallest positive integer with exactly three factors is 22 = 4.
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b) This time we want (e1 + 1)(e2 + 1) · · · (er + 1) = 4. We can do this with r = 1 and e1 = 3, or with r = 2
and e1 = e2 = 1. The smallest numbers obtainable in these ways are 23 = 8 and 2 · 3 = 6, respectively. So
the smallest number with four factors is 6.
c) This time we want (e1 + 1)(e2 + 1) · · · (er + 1) = 5. We can do this only with r = 1 and e1 = 4, so the
smallest such number is 24 = 16.
d) This time we want (e1 + 1)(e2 + 1) · · · (er + 1) = 6. We can do this with r = 1 and e1 = 5, or with
r = 2 and e1 = 2 and e2 = 1. The smallest numbers obtainable in these ways are 25 = 32 and 22 · 3 = 12,
respectively. So the smallest number with six factors is 12.
e) This time we want (e1 + 1)(e2 + 1) · · · (er + 1) = 10. We can do this with r = 1 and e1 = 9, or with
r = 2 and e1 = 4 and e2 = 1. The smallest numbers obtainable in these ways are 29 = 512 and 24 · 3 = 48,
respectively. So the smallest number with ten factors is 48.

48. Obviously there are no definitive answers to these problems, but we present below a reasonable and satisfying
rule for forming the sequence in each case.
a) All the entries are primes. In fact, the nth term is the smallest prime number greater than or equal to n .
b) Here we see that the sequence jumps at the prime locations. We can state this succinctly by saying that
the nth term is the number of prime numbers not exceeding n .
c) There are 0s in the prime locations and 1s elsewhere. In other words, the nth term of the sequence is 0 if
n is a prime number and 1 otherwise.
d) This sequence is actually important in number theory. The nth term is −1 if n is prime, 0 if n has a
repeated prime factor (for example, 12 = 22 · 3, so 2 is a repeated prime factor of 12 and therefore the twelfth
term is 0), and 1 otherwise (if n is not prime but is square-free).
e) The nth term is 0 if n has two or more distinct prime factors, and is 1 otherwise. In other words the nth

term is 1 if n is a power of a prime number.
f) The nth term is the square of the nth prime.

50. From a ≡ b (mod m) we know that b = a + sm for some integer s . Now if d is a common divisor of a and
m , then it divides the right-hand side of this equation, so it also divides b . We can rewrite the equation as
a = b − sm , and then by similar reasoning, we see that every common divisor of b and m is also a divisor
of a . This shows that the set of common divisors of a and m is equal to the set of common divisors of b

and m , so certainly gcd(a,m) = gcd(b,m).

52. We compute the first several of these: 2+1 = 3 (which is prime), 2 ·3+1 = 7 (which is prime), 2 ·3 ·5+1 = 31
(which is prime), 2 · 3 · 5 · 7 + 1 = 211 (which is prime), 2 · 3 · 5 · 7 · 11 + 1 = 2311 (which is prime). However,
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509, so the conjecture is false. Notice, however, that the prime factors in
this last case were necessarily different from the primes being multiplied.

54. Suppose by way of contradiction that q1 , q2 , . . . , qn are the only primes of the form 3k+ 2. Notice that this
list necessarily includes 2. Let Q = 3q1q2 · · · qn − 1. Notice that neither 3 nor any prime of the form 3k + 2
is a factor of Q . But Q ≥ 3 · 2 − 1 = 5 > 1, so it must have prime factors. Therefore all of its prime factors
are of the form 3k + 1. However, the product of numbers of the form 3k + 1 is again of that form, because
(3k + 1)(3l + 1) = 3(3kl + k + l) + 1. Patently Q is not of that form, and we have a contradiction, which
completes the proof.

56. Define the function f as suggested from the positive rational numbers to the positive integers. This is a one-
to-one function, because if we are given the value of f(p/q), we can immediately recover p and q uniquely
by writing f(p/q) in base eleven and noting what appears to the left of the one and only A in the expansion
and what appears to the right (and interpret these as numerals in base ten). Thus we have a one-to-one
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correspondence between the set of positive rational numbers and an infinite subset of the natural numbers,
which is countable; therefore the set of positive rational numbers is countable.

SECTION 4.4 Solving Congruences
2. We need to show that 13 · 937 ≡ 1 (mod 2436), or in other words, that 13 · 937 − 1 = 12180 is divisible by

2436. A calculator shows that it is, since 12180 = 2436 · 5.

4. We need a number that when multiplied by 2 gives a number congruent to 1 modulo 17. Since 18 ≡ 1 (mod 17)
and 2 · 9 = 18, it follows that 9 is an inverse of 2 modulo 17.

6. a) The first step of the procedure in Example 1 yields 17 = 8 · 2 + 1, which means that 17− 8 · 2 = 1, so −8
is an inverse. We can also report this as 9, because −8 ≡ 9 (mod 17).
b) We need to find s and t such that 34s+89t = 1. Then s will be the desired inverse, since 34s ≡ 1 (mod 89)
(i.e., 34s − 1 = −89t is divisible by 89). To do so, we proceed as in Example 2. First we go through the
Euclidean algorithm computation that gcd(34, 89) = 1:

89 = 2 · 34 + 21

34 = 21 + 13

21 = 13 + 8

13 = 8 + 5

8 = 5 + 3

5 = 3 + 2

3 = 2 + 1

Then we reverse our steps and write 1 as the desired linear combination:

1 = 3 − 2

= 3 − (5 − 3) = 2 · 3 − 5

= 2 · (8 − 5) − 5 = 2 · 8 − 3 · 5
= 2 · 8 − 3 · (13 − 8) = 5 · 8 − 3 · 13

= 5 · (21 − 13) − 3 · 13 = 5 · 21 − 8 · 13

= 5 · 21 − 8 · (34 − 21) = 13 · 21 − 8 · 34

= 13 · (89 − 2 · 34) − 8 · 34 = 13 · 89 − 34 · 34

Thus s = −34, so an inverse of 34 modulo 89 is −34, which can also be written as 55.
c) We need to find s and t such that 144s + 233t = 1. Then clearly s will be the desired inverse, since
144s ≡ 1 (mod 233) (i.e., 144s − 1 = −233t is divisible by 233). To do so, we proceed as in Example 2. In
fact, once we get to a certain point below, all the work was already done in part (b). First we go through the
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Euclidean algorithm computation that gcd(144, 233) = 1:

233 = 144 + 89

144 = 89 + 55

89 = 55 + 34

55 = 34 + 21

34 = 21 + 13

21 = 13 + 8

13 = 8 + 5

8 = 5 + 3

5 = 3 + 2

3 = 2 + 1

Then we reverse our steps and write 1 as the desired linear combination:

1 = 3 − 2

= 3 − (5 − 3) = 2 · 3 − 5

= 2 · (8 − 5) − 5 = 2 · 8 − 3 · 5
= 2 · 8 − 3 · (13 − 8) = 5 · 8 − 3 · 13

= 5 · (21 − 13) − 3 · 13 = 5 · 21 − 8 · 13

= 5 · 21 − 8 · (34 − 21) = 13 · 21 − 8 · 34

= 13 · (55 − 34) − 8 · 34 = 13 · 55 − 21 · 34

= 13 · 55 − 21 · (89 − 55) = 34 · 55 − 21 · 89

= 34 · (144 − 89) − 21 · 89 = 34 · 144 − 55 · 89

= 34 · 144 − 55 · (233 − 144) = 89 · 144 − 55 · 233

Thus s = 89, so an inverse of 144 modulo 233 is 89, since 144 · 89 = 12816 ≡ 1 (mod 233).
d) The first step in the Euclidean algorithm calculation is 1001 = 5 · 200 + 1. Thus −5 · 200 + 1001 = 1, and
−5 (or 996) is the desired inverse.

8. If x is an inverse of a modulo m , then by definition ax − 1 = tm for some integer t . If a and m in this
equation both have a common divisor greater than 1, then 1 must also have this same common divisor, since
1 = ax− tm . This is absurd, since the only positive divisor of 1 is 1. Therefore no such x exists.

10. We know from Exercise 6 that 9 is an inverse of 2 modulo 17. Therefore if we multiply both sides of this
equation by 9 we will get x ≡ 9 · 7 (mod 17). Since 63 mod 17 = 12, the solutions are all integers congruent
to 12 modulo 17, such as 12, 29, and −5. We can check, for example, that 2 · 12 = 24 ≡ 7 (mod 17). This
answer can also be stated as all integers of the form 12 + 17k for k ∈ Z .

12. In each case we multiply both sides of the congruence by the inverse found in Exercise 6 and simplify. Our
answers are not unique, of course—anything in the same congruence class works just as well.
a) We found that 55 is an inverse of 34 modulo 89, so x ≡ 77 · 55 = 4235 ≡ 52 (mod 89). Check:
34 · 52 = 1768 ≡ 77 (mod 89).
b) We found that 89 is an inverse of 144 modulo 233, so x ≡ 4 · 89 = 356 ≡ 123 (mod 233). Check:
144 · 123 = 17712 ≡ 4 (mod 233).
c) We found that −5 is an inverse of 200 modulo 1001, so x ≡ 13 · (−5) = −65 ≡ 936 (mod 1001). (We
could also leave the answer as −65.) Check: 200 · 936 = 187200 ≡ 13 (mod 1001).
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14. Adding 12 to both sides of the congruence yields 12x2 +25x+12 ≡ 0 (mod 11). (We chose something to add
that would make the left-hand side easily factorable and the right-hand side equal to 0.) This is equivalent
to (3x + 4)(4x + 3) ≡ 0 (mod 11). Because there are no non-zero divisors of 0 modulo 11, this congruence
is true if and only if either 3x + 4 ≡ 0 (mod 11) or 4x + 3 ≡ 0 (mod 11). (This would have been more
complicated modulo a non-prime modulus, because there would be nonzero divisors of 0.) We solve these
linear congruences by inspection (guess and check) or using the Euclidean algorithm to find inverses of 3 and
4 (or using computer algebra software), to yield x = 6 or x = 2. In fact, typing “msolve(12^2+25x=10,11)”
into Maple produces this solution set.

16. a) We can find inverses using the technique shown in Example 2. With a little work (or trial and error, which
is actually faster in this case), we find that 2 · 6 ≡ 1 (mod 11), 3 · 4 ≡ 1 (mod 11), 5 · 9 ≡ 1 (mod 11), and
7 · 8 ≡ 1 (mod 11). Actually, the problem does not ask us to show these pairs explicitly, only to show that
they exist. The general argument given in Exercise 18 shows this.
b) In this specific case we can compute 10! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 = 1 · (2 · 6) · (3 · 4) · (5 · 9) · (7 · 8) · 10 ≡
1 · 1 · 1 · 1 · 10 = 10 ≡ −1 (mod 11). Alternatively, we can use the proof in Exercise 18.

18. a) Every positive integer less than p has an inverse modulo p , and by Exercise 7 this inverse is unique among
positive integers less than p . This follows from Theorem 1, since every number less than p must be relatively
prime to p (because p is prime it has no smaller divisors). We can group each positive integer less than p

with its inverse. The only issue is whether some numbers are their own inverses, in which case this grouping
does not produce pairs. By Exercise 17 only 1 and −1 (which is the same as p− 1 modulo p) are their own
inverses. Therefore all the other positive integers less than p can be grouped into pairs consisting of inverses
of each other, and there are clearly (p− 1 − 2)/2 = (p− 3)/2 such pairs.
b) When we compute (p − 1)! , we can write the product by grouping the pairs of inverses modulo p . Each
such pair produces the product 1 modulo p , so modulo p the entire product is the same as the product of
the only unpaired elements, namely 1 · (p− 1) = p− 1. Since this equals −1 modulo p , our proof is complete.
c) By the contrapositive of what we have just proved, we can conclude that if (n− 1)! &≡ −1 (mod n) then n

is not prime.

20. Since 3, 4, and 5 are pairwise relatively prime, we can use the Chinese remainder theorem. The answer will
be unique modulo 3 · 4 · 5 = 60. Using the notation in the text, we have a1 = 2, m1 = 3, a2 = 1, m2 = 4,
a3 = 3, m3 = 5, m = 60, M1 = 60/3 = 20, M2 = 60/4 = 15, M3 = 60/5 = 12. Then we need to find
inverses yi of Mi modulo mi for i = 1, 2, 3. This can be done by inspection (trial and error), since the moduli
here are so small, or systematically using the Euclidean algorithm (as in Example 2); we find that y1 = 2,
y2 = 3, and y3 = 3. Thus our solution is x = 2 · 20 · 2 + 1 · 15 · 3 + 3 · 12 · 3 = 233 ≡ 53 (mod 60). So the
solutions are all integers of the form 53 + 60k , where k is an integer.

22. By definition, the first congruence can be written as x = 6t + 3 where t is an integer. Substituting this
expression for x into the second congruence tells us that 6t + 3 ≡ 4 (mod 7), which can easily be solved
to show that t ≡ 6 (mod 7). From this we can write t = 7u + 6 for some integer u . Thus x = 6t + 3 =
6(7u + 6) + 3 = 42u + 39. Thus our answer is all numbers congruent to 39 modulo 42. We check our answer
by confirming that 39 ≡ 3 (mod 6) and 39 ≡ 4 (mod 7).

24. By definition, the first congruence can be written as x = 2t + 1 where t is an integer. Substituting this
expression for x into the second congruence tells us that 2t + 1 ≡ 2 (mod 3), which can easily be solved
to show that t ≡ 2 (mod 3). From this we can write t = 3u + 2 for some integer u . Thus x = 2t + 1 =
2(3u+2)+1 = 6u+5. Next we have 6u+5 ≡ 3 (mod 5), which we solve to get u ≡ 3 (mod 5), so u = 5v+3.
Thus x = 6(5v + 3) + 5 = 30v + 23. For the last congruence we have 30v + 23 ≡ 4 (mod 11); solving this is a
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little harder but trial and error or the applying the methods of Example 2 to get an inverse and then Example 3
shows that v ≡ 10 (mod 11). Therefore x = 30(11w + 10) + 23 = 330w + 323. So our solution is all integers
congruent to 323 modulo 330. We check our answer by confirming that 323 ≡ 1 (mod 2), 323 ≡ 2 (mod 3),
323 ≡ 3 (mod 5), and 323 ≡ 4 (mod 11).

26. We cannot apply the Chinese remainder theorem directly, since the moduli are not pairwise relatively prime.
However, we can, using the Chinese remainder theorem, translate these congruences into a set of congruences
that together are equivalent to the given congruence. Since we want x ≡ 5 (mod 6), we must have x ≡ 5 ≡
1 (mod 2) and x ≡ 5 ≡ 2 (mod 3). Similarly, from the second congruence we must have x ≡ 1 (mod 2)
and x ≡ 3 (mod 5); and from the third congruence we must have x ≡ 2 (mod 3) and x ≡ 3 (mod 5).
Since these six statements are consistent, we see that our system is equivalent to the system x ≡ 1 (mod 2),
x ≡ 2 (mod 3), x ≡ 3 (mod 5). These can be solved using the Chinese remainder theorem (see Example 5) to
yield x ≡ 23 (mod 30). Therefore the solutions are all integers of the form 23 + 30k , where k is an integer.

28. This is just a restatement of the Chinese remainder theorem. Given any such a we can certainly compute
a mod m1 , a mod m2 , . . . , a mod mn to represent it. The Chinese remainder theorem says that there is
only one nonnegative integer less than m yielding each n-tuple, so the representation is unique.

30. We follow the hint and suppose that there are two solutions to the set of congruences. Thus suppose that
x ≡ ai (mod mi) and y ≡ ai (mod mi) for each i . We want to show that these solutions are the same
modulo m ; this will guarantee that there is only one nonnegative solution less than m . The assumption
certainly implies that x ≡ y (mod mi) for each i . But then Exercise 29 tells us that x ≡ y (mod m), as
desired.

32. We are asked to solve x ≡ 0 (mod 5) and x ≡ 1 (mod 3). We know from the Chinese remainder theorem
that there is a unique answer modulo 15. It is probably quickest just to look for it by dividing each multiple
of 5 by 3, and we see immediately that x = 10 satisfies the condition. Thus the solutions are all integers
congruent to 10 modulo 15. If the numbers involved were larger, then we could use the technique implicit in
the proof of Theorem 2 (see Exercise 53).

34. Fermat’s little theorem tells us that 2340 ≡ 1 (mod 41). Therefore 231002 = (2340)25 ·232 ≡ 125 ·529 = 529 ≡
37 (mod 41).

36. By Exercise 35, an inverse of 5 modulo 41 is 539 . We can stop there, but presumably we’d like a simpler answer.
This could be calculated using modular exponentiation (or, from a practical point of view, with computer
algebra software). The simplest form of this is 33, and it is easy to check that 5 · 33 = 165 ≡ 1 (mod 41).

38. a) By Fermat’s little theorem we know that 34 ≡ 1 (mod 5); therefore 3300 = (34)75 ≡ 175 ≡ 1 (mod 5),
and so 3302 = 32 · 3300 ≡ 9 · 1 = 9 (mod 5), so 3302 mod 5 = 4. Similarly, 36 ≡ 1 (mod 7); therefore
3300 = (36)50 ≡ 1 (mod 5), and so 3302 = 32 ·3300 ≡ 9 (mod 7), so 3302 mod 7 = 2. Finally, 310 ≡ 1 (mod 11);
therefore 3300 = (310)30 ≡ 1 (mod 11), and so 3302 = 32 · 3300 ≡ 9 (mod 11), so 3302 mod 11 = 9.
b) Since 3302 is congruent to 9 modulo 5, 7, and 11, it is also congruent to 9 modulo 385. (This was a
particularly trivial application of the Chinese remainder theorem.)

40. Note that the prime factorization of 42 is 2 · 3 · 7. So it suffices to show that 2 |n7 − n , 3 |n7 − n , and
7 |n7 −n . The first is trivial (n7 −n is either “odd minus odd” or“even minus even,” both of which are even),
and each of the other two follows immediately from Fermat’s little theorem, because n7 − n ≡ (n2)3 · n− n ≡
1 · n− n = 0 (mod 3) and n7 − n ≡ n− n = 0 (mod 7).
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42. To decide whether 213 − 1 = 8191 is prime, we need only look for a prime factor not exceeding
√

8191 ≈ 90.5.
By Exercise 41 every such prime divisor must be of the form 26k + 1. The only candidates are therefore 53
and 79. We easily check that neither is a divisor, and so we conclude that 8191 is prime.

We can take the same approach for 223 − 1 = 8,388,607, but we might worry that there will be far too
many potential divisors to test, since we must go as far as 2896. By Exercise 41 every prime divisor of 223 − 1
must be of the form 46k+1. The first candidate divisor is therefore 47. Luckily 47 | 8,388,607, so we conclude
that this Mersenne number is not prime.

44. Let xk = b(n−1)/2k

= b2
s−kt , for k = 0, 1, 2, . . . , s . Because n is prime and n& | b , Fermat’s little theorem tells

us that x0 = bn−1 ≡ 1 (mod n). By Exercise 17, because x2
1 = (b(n−1)/2)2 = x0 ≡ 1 (mod n), either x1 ≡

−1 (mod n) or x1 ≡ 1 (mod n). If x1 ≡ 1 (mod n), because x2
2 = x1 ≡ 1 (mod n), either x2 ≡ −1 (mod n)

or x2 ≡ 1 (mod n). In general, if we have found that x0 ≡ x1 ≡ x2 ≡ · · · ≡ xk ≡ 1 (mod n), with k < s , then,
because x2

k+1 = xk ≡ 1 (mod n), we know that either xk+1 ≡ −1 (mod n) or xk+1 ≡ 1 (mod n). Continuing
this procedure for k = 1, 2, . . . , s , we find that either xs = bt ≡ 1 (mod n), or xk ≡ −1 (mod n) for some
integer k with 0 ≤ k ≤ s . Hence, n passes Miller’s test for the base b .

46. This follows from Exercise 49, taking m = 1. Alternatively, we can argue directly as follows. Factor 1729 =
7 · 13 · 19. We must show that this number meets the definition of Carmichael number, namely that b1728 ≡
1 (mod 1729) for all b relatively prime to 1729. Note that if gcd(b, 1729) = 1, then gcd(b, 7) = gcd(b, 13) =
gcd(b, 19) = 1. Using Fermat’s little theorem we find that b6 ≡ 1 (mod 7), b12 ≡ 1 (mod 13), and b18 ≡
1 (mod 19). It follows that b1728 = (b6)288 ≡ 1 (mod 7), b1728 = (b12)144 ≡ 1 (mod 13), and b1728 = (b18)96 ≡
1 (mod 19). By Exercise 29 (or the Chinese remainder theorem) it follows that b1728 ≡ 1 (mod 1729), as
desired.

48. Let b be a positive integer with gcd(b, n) = 1. The gcd(b, pj) = 1 for j = 1, 2, . . . , k , and hence, by Fermat’s
little theorem, bpj−1 ≡ 1 (mod pj) for j = 1, 2, . . . , k . Because pj − 1 |n − 1, there are integers tj with
tj(pj − 1) = n − 1. Hence for each j we know that bn−1 = b(pj−1)tj = (b(pj−1))tj ≡ 1 (mod pj). Therefore
bn−1 ≡ 1 (mod n), as desired.

50. We could use the technique shown in the proof of Theorem 2 to solve each part, or use the approach in
our solution to Exercise 32, but since there are so many to do here, it is simpler just to write out all the
representations of 0 through 27 and find those given in each part. This task is easily done, since the pattern
is clear:

0 = (0, 0) 7 = (3, 0) 14 = (2, 0) 21 = (1, 0)
1 = (1, 1) 8 = (0, 1) 15 = (3, 1) 22 = (2, 1)
2 = (2, 2) 9 = (1, 2) 16 = (0, 2) 23 = (3, 2)
3 = (3, 3) 10 = (2, 3) 17 = (1, 3) 24 = (0, 3)
4 = (0, 4) 11 = (3, 4) 18 = (2, 4) 25 = (1, 4)
5 = (1, 5) 12 = (0, 5) 19 = (3, 5) 26 = (2, 5)
6 = (2, 6) 13 = (1, 6) 20 = (0, 6) 27 = (3, 6)

Now we can read off the answers.
a) 0 b) 21 c) 1 d) 22 e) 2 f) 24 g) 14 h) 19 i) 27

52. To add 4 and 7 we first find that 4 is represented by (1, 4) and that 7 is represented by (1, 2). Adding
coordinate-wise, we see that the sum is represented by (1+1, 4+2) = (2, 6) = (2, 1); we are working modulo 5
in the second coordinate. Then we find (2, 1) in the table and see that it represents 11. Therefore we conclude
that 4 + 7 = 11. Note that we can only compute answers less than 3 · 5 = 15 using this method.
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54. We calculate 2i mod 19 for i = 1, 2, . . . , 18 and see that we get 18 different values. The values are 2, 4, 8,
16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1.

56. The proof is the same as the proof for the corresponding identity for the real numbers. To show that logr(ab) ≡
logr a + logr b (mod p − 1), it suffices (by definition) to show that rlogr a+logr b ≡ ab (mod p − 1). But
rlogr a+logr b = rlogr a · rlogr b ≡ a · b (mod p− 1).

58. We square the first five positive integers and reduce modulo 11, obtaining 1, 4, 9, 5, 3. The squares of the
next five are necessarily the same set of numbers modulo 11, since (−x)2 = x2 , so we are done. Therefore the
quadratic residues modulo 11 are all integers congruent to 1, 3, 4, 5, or 9 modulo 11.

60. Consider the list x2 mod p as x runs from 1 to p− 1 inclusive. This gives us p− 1 numbers between 1 and
p− 1 inclusive. By Exercise 59 every a that appears in this list appears exactly twice. Therefore exactly half
of the p− 1 numbers must appear in the list (i.e., be quadratic residues).

62. First assume that
(
a
p

)
= 1. Then the congruence x2 ≡ a (mod p) has a solution, say x = s . By Fermat’s

little theorem a(p−1)/2 = (s2)(p−1)/2 = sp−1 ≡ 1 (mod p), as desired. Next consider the case
(
a
p

)
= −1.

Then the congruence x2 ≡ a (mod p) has no solution. Let i be an integer between 1 and p − 1, inclusive.
By Theorem 1, i has an inverse i′ modulo p , and therefore there is an integer j , namely i′a , such that
ij ≡ a (mod p). Furthermore, since the congruence x2 ≡ a (mod p) has no solution, j &= i . Thus we can
group the integers from 1 to p − 1 into (p − 1)/2 pairs each with the product a . Multiplying these pairs
together, we find that (p− 1)! ≡ a(p−1)/2 (mod p). But now Wilson’s theorem (see Exercise 18) tells us that
this latter value is −1, again as desired.

64. If p ≡ 1 (mod 4), then (p− 1)/2 is even, so the right-hand side of the equivalence in Exercise 62 with a = −1
is +1, that is, −1 is a quadratic residue. Conversely, if p ≡ 3 (mod 4), then (p−1)/2 is odd, so the right-hand
side of the equivalence in Exercise 62 with a = −1 is −1, that is, −1 is not a quadratic residue.

66. We follow the hint. Working modulo 3, we want to solve x2 ≡ 16 ≡ 1. It is easy to see that there are
exactly two solutions modulo 3, namely x = 1 and x = 2. Similarly we find the solutions x = 1 and x = 4
to x2 ≡ 16 ≡ 1 (mod 5); and the solutions x = 3 and x = 4 to x2 ≡ 16 ≡ 2 (mod 7). Therefore we
want to find values of x modulo 3 · 5 · 7 = 105 such that x ≡ 1 or 2 (mod 3), x ≡ 1 or 4 (mod 5) and
x ≡ 3 or 4 (mod 7). We can do this by applying the Chinese remainder theorem (as in Example 5) eight
times, for the eight combinations of these values. For example, to solve x ≡ 1 (mod 3), x ≡ 1 (mod 5),
and x ≡ 3 (mod 7), we find that m = 105, M1 = 35, M2 = 21, M3 = 15, y1 = 2, y2 = 1, y3 = 1, so
x ≡ 1 · 35 · 2 + 1 · 21 · 1 + 3 · 15 · 1 = 136 ≡ 31 (mod 105). Doing the similar calculation with the other seven
possibilities yields the other solutions modulo 105: x = 4, x = 11, x = 46, x = 59, x = 74, x = 94 and
x = 101.
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SECTION 4.5 Applications of Congruences
2. In each case we need to compute k mod 101 by dividing by 101 and finding the remainders. This can be

done with a calculator that keeps 13 digits of accuracy internally. Just divide the number by 101, subtract
off the integer part of the answer, and multiply the fraction that remains by 101. The result will be almost
exactly an integer, and that integer is the answer.
a) 58 b) 60 c) 52 d) 3

4. We compute as follows: h(k1) = 1524; h(k2) = 578; h(k3) = 578, which collides, h(k3, 1) = 2505, so k3 is
assigned memory location 2505; h(k4) = 2376; h(k5) = 3960; h(k6) = 1526; h(k7) = 2854; h(k8) = 1526,
which collides, h(k8, 1) = 4927, so k8 is assigned memory location 4927; h(k9) = 3960, which collides,
h(k9, 1) = 6100 ≡ 1131 (mod 4969), so k9 is assigned memory location 1131; h(k10) = 3960, which collides,
h(k10, 1) = 4702, so k10 is assigned memory location 4702. Notice that we never had to go above i = 1 in
the probing sequence.

6. We just calculate using the formula. We are given x0 = 3. Then x1 = (4 · 3 + 1) mod 7 = 13 mod 7 = 6;
x2 = (4 · 6 + 1) mod 7 = 25 mod 7 = 4; x3 = (4 · 4 + 1) mod 7 = 17 mod 7 = 3. At this point the sequence
must continue to repeat 3, 6, 4, 3, 6, 4, . . . forever.

8. We assume that the input to this procedure consists of a modulus (m ≥ 2), a multiplier (a), an increment
(c), a seed (x0 ), and the number (n) of pseudorandom numbers desired. The output will be the sequence
{xi} .

procedure pseudorandom(m, a, c, x0, n : nonnegative integers)
for i := 1 to n

xi := (axi−1 + c) mod m

10. We follow the instructions. Because 37922 = 14379264, the middle four digits are 3792, which is the number
we started with. So this sequence is not random at all—it’s constant! Similarly, 29162 = 08503056, 50302 =
25300900, 30092 = 09054081, and 05402 = 00291600, which gives us back the number we started with, so
this sequence degenerates into a repeating sequence with period 4.

12. We are told to apply the formula xn+1 = x2
n mod 11, starting with x0 = 3. Thus x1 = 32 mod 11 = 9,

x3 = 92 mod 11 = 4, x4 = 42 mod 11 = 5, x5 = 52 mod 11 = 3, and we are back where we started. The
sequence generated here is 3, 9, 4, 5, 3, 9, 4, 5, . . . .

14. If a string contains an odd number of errors, then the number of 1’s in the string with its check bit will differ
by an odd number from what it should be, which means it will be an odd number, rather than the expected
even number, and we will know that there is an error. If the string contains an even number of errors, then
the number of 1’s in the string with its check bit will differ by an even number from what it should be, which
means it will be an even number, as expected, and we will not know that anything is wrong.

16. We know that 1 · 0 + 2 · 3 + 3 · 2 + 4 · 1 + 5 · 5 + 6 · 0 + 7 · 0 + 8 · Q + 9 · 1 + 10 · 8 ≡ 0 (mod 11). This
simplifies to 130 + 8Q ≡ 0 (mod 11). We subtract 130 from both sides and simplify to 8Q ≡ 2 (mod 11),
since −130 = −12 · 11 + 2. It is now a simple matter to use trial and error (or the methods of Section 4.4) to
find that Q = 3 (since 24 ≡ 2 (mod 11)).

18. In each case we just have to compute x1 + x2 + · · · + x10 mod 9 The easiest way to do this by hand is to
“cast out nines,” i.e., throw away sums of 9 as we come to them.
a) 7 + 5 + 5 + 5 + 6 + 1 + 8 + 8 + 7 + 3 mod 9 = 1 b) 5 c) 2 d) 0
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20. In each case we want to solve the equation x1 + x2 + · · · + x10 ≡ x11 (mod 9) for the missing digit, which is
easily done by inspection (one can throw away 9’s).
a) Q + 1 + 2 + 2 + 3 + 1 + 3 + 9 + 7 + 8 ≡ 4 (mod 9) ⇒ Q ≡ 4 (mod 9) ⇒ Q = 4
b) 6 + 7 + 0 + 2 + 1 + 2 + 0 +Q+ 9 + 8 ≡ 8 (mod 9) ⇒ Q+ 8 ≡ 8 (mod 9) ⇒ Q ≡ 0 (mod 9). There are two
single-digit numbers Q that makes this true: Q = 0 and Q = 9, so it is impossible to know for sure what the
smudged digit was.
c) 2 + 7 +Q+ 4 + 1 + 0 + 0 + 7 + 7 + 3 ≡ 4 (mod 9) ⇒ Q+ 4 ≡ 4 (mod 9) ⇒ Q ≡ 0 (mod 9). There are two
single-digit numbers Q that makes this true: Q = 0 and Q = 9, so it is impossible to know for sure what the
smudged digit was.
d) 2 + 1 + 3 + 2 + 7 + 9 + 0 + 3 + 2 + Q ≡ 1 (mod 9) ⇒ Q + 2 ≡ 1 (mod 9) ⇒ Q ≡ 8 (mod 9) ⇒ Q = 8

22. If one digit is changed to a value not congruent to it modulo 9, then the modular equivalence implied by
the equation in the preamble will no longer hold. Therefore all single digit errors are detected except for the
substitution of a 9 for a 0 or vice versa.

24. In each case we want to solve the equation 3x1 +x2 +3x3 +x4 + · · ·+3x11 +x12 ≡ 0 (mod 10) for x12 , which
can be done mentally, because we need to keep track of only the last digit.
a) 3 · 7 + 3 + 3 · 2 + 3 + 3 · 2 + 1 + 3 · 8 + 4 + 3 · 4 + 3 + 3 · 4 + x12 ≡ 0 (mod 10) ⇒ x12 = 5
b) 3 · 6 + 3 + 3 · 6 + 2 + 3 · 3 + 9 + 3 · 9 + 1 + 3 · 3 + 4 + 3 · 6 + x12 ≡ 0 (mod 10) ⇒ x12 = 2
c) 3 · 0 + 4 + 3 · 5 + 8 + 3 · 7 + 3 + 3 · 2 + 0 + 3 · 7 + 2 + 3 · 0 + x12 ≡ 0 (mod 10) ⇒ x12 = 0
d) 3 · 9 + 3 + 3 · 7 + 6 + 3 · 4 + 3 + 3 · 2 + 3 + 3 · 3 + 4 + 3 · 1 + x12 ≡ 0 (mod 10) ⇒ x12 = 3

26. Yes. Any single digit error will change, say, x to y , and one side of the congruence given in Example 5 will
differ by either x− y or 3(x− y) from its true value. Because x− y &≡ 0 and 3(x− y) &≡ 0 (mod 10) (since 3
is relatively prime to 10), the congruence will no longer hold.

28. In each case we need to compute the remainder of the given 14-digit number upon division by 7.
a) 10237424413392 mod 7 = 1 b) 00032781811234 mod 7 = 4
c) 00611232134231 mod 7 = 5 d) 00193222543435 mod 7 = 5

30. A change in the digit in the nth column from the right in the 14-digit number formed by the first 14 digits of
the airline ticket identification number (with n = 0 corresponding to the units digit), say from x to y , will
cause this 14-digit number to differ from its correct value by (x− y)10n . If this equals 0 modulo 7, then the
error will not be detected. Because 7 and 10 are relatively prime, that will happen if and only if |x− y| = 7;
therefore we can detect errors except 0 ↔ 7, 1 ↔ 8, 2 ↔ 9. The same reasoning applies to the check digit
(although of course 7, 8, and 9 are invalid digits for the check digit anyway).

32. It follows from the preamble that we need to compute 3d1 + 4d2 + 5d3 + 6d4 + 7d5 + 8d6 + 9d7 mod 11 in
order to determine the check digit d8 .
a) 3 · 1 + 4 · 5 + 5 · 7 + 6 · 0 + 7 · 8 + 8 · 6 + 9 · 8 mod 11 = 3
b) 3 · 1 + 4 · 5 + 5 · 5 + 6 · 3 + 7 · 7 + 8 · 3 + 9 · 4 mod 11 = 10, so the check digit is X.
c) 3 · 1 + 4 · 0 + 5 · 8 + 6 · 9 + 7 · 7 + 8 · 0 + 9 · 8 mod 11 = 9
d) 3 · 1 + 4 · 3 + 5 · 8 + 6 · 3 + 7 · 8 + 8 · 1 + 9 · 1 mod 11 = 3

34. Yes. Any single digit error will change, say, x to y , and one side of the congruence given in the preamble will
differ by a(x− y), for some a ∈ {1, 3, 4, 5, 6, 7, 8, 9} , from its true value. Each of those values of a is relatively
prime to 11, so a(x− y) &≡ 0 (mod 11) and the congruence will no longer hold.
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SECTION 4.6 Cryptography
2. These are straightforward arithmetical calculations, as in Exercise 1.

a) WXST TSPPYXMSR b) NOJK KJHHPODJI c) QHAR RABBYHCAJ

4. We just need to “subtract 3” from each letter. For example, E goes down to B, and B goes down to Y.
a) BLUE JEANS b) TEST TODAY c) EAT DIM SUM

6. Under these assumptions we guess that the plaintext E became the ciphertext X. Since the number for E is 4
and the number for X is 23, k = 23 − 4 = 19.

8. Because of the word JVVU we guess that the ciphertext V might be the plaintext E or O. If it is the former,
then the shift would have to be 21 − 4 = 17. Applying the inverse of that shift to the message yields MEN
LOVE TO WONDER, AND THAT IS THE SEED OF SCIENCE.

10. If the enciphering function is f(p) = (p+k) mod 26, then the deciphering function is f−1(p) = (p−k) mod 26.
Thus we seek a k such that k ≡ −k (mod 26), and the unique solution is k = 13.

12. If a is the inverse of a modulo 26, then the decryption function for the encryption function c = (ap+b) mod 26
is p = a(c−b) mod 26 = (ac−ab) mod 26. Clearly two different pairs (a, b) cannot give the same encryption
function, so we need to solve the system of congruences a ≡ a (mod 26) and b ≡ −ab (mod 26). Only 1 and
−1 (which is the same as 25) are their own multiplicative inverses modulo 26 (this can be verified by asking
a computer algebra system to compute all the inverses), so there are two cases. If a = 1, then the second
congruence becomes b ≡ −b (mod 26), whose solutions are b = 0 and b = 13. This says that the identity
function c = p mod 26 satisfies the given condition (although that was obvious and not very interesting),
and so does c = (p + 13) mod 26. If a = −1, then the second congruence becomes b ≡ b (mod 26), which is
satisfied by all values of b . Therefore all encryption functions of the form c = (−p + b) mod 26 also have
themselves as the corresponding decryption function. The answer to the question phrased in terms of pairs is
(1, 0), (1, 13), and (−1, b) (or, equivalently, (25, b)) for all b .

14. Within each block of five letters (GRIZZ LYBEA RSXXX) we send the first letter to the third letter, the
second letter to the fifth letter, and so on. So the encrypted message is IZGZR BELAY XXRXS.

16. One method, using technology, would be to try all possibilities. For n = 2, 3, 4, . . . , have the computer go
through all n! permutations of {1, 2, 3, . . . , n} and for each one permute blocks of n letters of the ciphertext,
printing out the resulting plaintext on the computer screen. You, a human, can look at them and figure out
which ones make sense as a message.

18. The plaintext string in numbers is 18-13-14-22-5-0-11-11. We add the string for the key repeated twice,
1-11-20-4-1-11-20-4, to obtain the string 19-24-8-0-6-11-5-15, which in letters is TYIAGLFP.

20. A cryptosystem is a 5-tuple (P, C,K, E ,D), as explained in Definition 1. We follow the discussion of Example 7.
As there, P and C are strings of elements of Z26 . The set of keys is the set of strings over Z26 as well. The set
of encryption functions is the set of functions described in the preamble to Exercise 18. The set of decryption
functions is the same, because decrypting with the string a-b -c-. . . is the same as encrypting with the string
(−a)-(−b)-(−c)-. . .

22. Suppose the length of the key string is l . We can apply the frequency method, explained in Example 5 and
the preceding discussion, to the letters in positions 1, 1 + l , 1 + 2l , . . . to determine the first letter of the
key string (viewed as a number from 0 to 25), then do the same for the second letter, and so on up to the lth

letter.
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24. Translating the letters into numbers we have 0019 1900 0210. Thus we need to compute C = P 13 mod 2537
for P = 19, P = 1900, and P = 210. The results of these calculations, done by fast modular multiplication
or a computer algebra system are 2299, 1317, and 2117, respectively. Thus the encrypted message is 2299
1317 2117.

26. First we find d , the inverse of e = 17 modulo 52 ·60. A computer algebra system tells us that d = 2753. Next
we have the CAS compute cd mod n for each of the four given numbers: 31852753 mod 3233 = 1816 (which
are the letters SQ), 20382753 mod 3233 = 2008 (which are the letters UI), 24602753 mod 3233 = 1717 (which
are the letters RR), and 25502753 mod 3233 = 0411 (which are the letters EL). The message is SQUIRREL.

28. If M ≡ 0 (mod n), then C ≡ Me ≡ 0 (mod n) and so Cd ≡ 0 ≡ M (mod n). Otherwise, gcd(M,p) = p and
gcd(M, q) = 1, or gcd(M,p) = 1 and gcd(M, q) = q . By symmetry it suffices to consider the first case, where
M ≡ 0 (mod p). We have Cd ≡ (Me)d ≡ (0e)d ≡ 0 ≡ M (mod p). As in the case considered in the text,
de = 1 + k(p− 1)(q − 1) for some integer k , so

Cd ≡ Mde ≡ M1+k(p−1)(q−1) ≡ M ·M(q−1)k(p−1) ≡ M · 1 ≡ M (mod q)

by Fermat’s little theorem. Thus by the Chinese remainder theorem, Cd ≡ M (mod pq).

30. We follow the steps given in the text, with p = 101, a = 2, k1 = 7, and k2 = 9. Using Maple, we verify
that 2 is a primitive root modulo 101, by noticing that 2k as k runs from 0 to 99 produce distinct values
(and of course 2100 mod 101 = 1). We find that 27 mod 101 = 27. So in Step (2), Alice sends 27 to Bob.
Similarly, in Step (3), Bob sends 29 mod 101 = 7 to Alice. In Step (4) Alice computes 77 mod 101 = 90,
and in Step (5) Bob computes 279 mod 101 = 90. These are the same, of course, and thus 90 is the shared
key.

32. When broken into blocks and translated into numbers the message is 0120 2413 1422. Alice applies her
decryption transformation D(2867,7)(x) = x1183 mod 2867 to each block, which we compute with a CAS to
give 1665 1728 2123. Next she applies Bob’s encryption transformation E(3127,21)(x) = x21 mod 3127 to each
block, which we compute with a CAS to give 2806 1327 0412. She sends that to Bob. Only Bob can read it,
which he does by first applying his decryption transformation D(3127,21)(x) = x1149 mod 3127 to each block,
recovering 1665 1728 2123, and then applying Alice’s encryption transformation E(2867,7)(x) = x7 mod 2867
to each of these blocks, recovering the original 0120 2413 1422, BUY NOW.

SUPPLEMENTARY EXERCISES FOR CHAPTER 4
2. a) Each week consists of seven days. Therefore to find how many (whole) weeks there are in n days, we need

to see how many 7’s there are in n . That is exactly what n div 7 tells us.
b) Each day consists of 24 hours. Therefore to find how many (whole) days there are in n hours, we need to
see how many 24’s there are in n . That is exactly what n div 24 tells us.

4. Let q =
⌈
a

d
− 1

2

⌉
and r = a−dq . Then we have forced a = dq+r , so it remains to prove that −d/2 < r ≤ d/2.

Now since q − 1 <
a

d
− 1

2
≤ q , we have (by multiplying through by d and adding d/2) dq − d

2
< a ≤ dq +

d

2
,

so −d

2
< a− dq ≤ d

2
, as desired.

6. By Exercise 38 in Section 4.1, the square of an integer is congruent to either 0 or 1 modulo 4, where obviously
the odd integers have squares congruent to 1 modulo 4. The sum of two of these is therefore congruent to 2
modulo 4, so cannot be a square.
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8. If there were integer solutions to this equation, then by definition we would have x2 ≡ 2 (mod 5). However we
easily compute (as in Exercise 40 in Section 4.1) that the square of an integer of the form 5k is congruent to 0
modulo 5; the square of an integer of the form 5k + 1 is congruent to 1 modulo 5; the square of an integer
of the form 5k + 2 is congruent to 4 modulo 5; the square of an integer of the form 5k + 3 is congruent to 4
modulo 5; and the square of an integer of the form 5k+4 is congruent to 1 modulo 5. This is a contradiction,
so no solutions exist.

10. The number 3 plays the same role in base two that the number 11 plays in base ten (essentially because
(11)2 = 3). The divisibility test for 11 in base ten is that dndn−1 . . . d2d1d0 is divisible by 11 if and only
if the alternating sum d0 − d1 + d2 − · · · + (−1)ndn is divisible by 11. The corresponding rule here is that
(dndn−1 . . . d2d1d0)2 is divisible by 3 if and only if the alternating sum d0−d1 +d2− · · ·+(−1)ndn is divisible
by 3. For example, 27 = (11011)2 is divisible by 3 because 1− 1 + 0− 1 + 1 = 0 is divisible by 3. The proof
follows from the fact that 2n − 1 ≡ 0 (mod 3) if n is even and 2n + 1 ≡ 0 (mod 3) if n is odd. Thus we have

(dndn−1 . . . d2d1d0)2 = d0 + 2d1 + 22d2 + 23d3 + · · · 2ndn
= d0 + (3k1 − 1)d1 + (3k2 + 1)d2 + (3k3 − 1)d3 + · · · + (3kn + (−1)n)dn
= [d0 − d1 + d2 − · · · + (−1)ndn] + [3(k1d1 + k2d2 + k3d3 + · · · + kndn)]

for integers k1 = 1, k2 = 1, k3 = 3, k4 = 5, k5 = 11, . . . . The second bracketed expression is always divisible
by 3, so the entire number is divisible by 3 if and only if the alternating sum is.

12. As we see from Exercise 11, at most n questions (guesses) are needed. Furthermore, at least this many yes/no
questions are needed as well, since if we asked fewer questions, then by the pigeonhole principle, two numbers
would produce the same set of answers and we would be unable to guess the number accurately. Thus the
complexity is n questions. (The case n = 0 is not included, since in that case no questions are needed.) We
are assuming throughout this exercise and the previous one that the inclusive sense of “between” was intended.

14. First note that since both a and b must be greater than 1, the sequences $ka% and $kb% do not list any
positive integer twice. The issue is whether any positive integer is listed in both sequences, or whether some
positive integer is omitted altogether. Let N(x, n) denote the number of positive integers in the set { $kx% |
k is a positive integer } that are less than or equal to n . Then it is enough to prove that N(a, n)+N(b, n) = n

for all positive integers n . (That way no positive integer could be left out or appear twice when we consider
all the numbers $ka% and $kb% .) Now N(a, n) is the number of positive integers k for which $ka% ≤ n ,
which is just the number of positive integers k for which ka < n + 1, since a is irrational, and this is clearly
$(n + 1)/a% . We have a similar result for b . Let f(x) denote the fractional part of x (i.e., f(x) = x− $x%).
Then we have

N(a, n) + N(b, n) =
⌊
n + 1
a

⌋
+

⌊
n + 1
b

⌋
=

n + 1
a

− f

(
n + 1
a

)
+

n + 1
b

− f

(
n + 1
b

)
.

But the sum of the first and third terms of the right-hand side here is n + 1, since we are given that
(1/a) + (1/b) = 1. The second and fourth terms are each fractions strictly between 0 and 1, and the entire
expression is an integer, so they must sum to 1. Therefore the displayed value is n + 1 − 1 = n , as desired.

16. The first few of these are Q1 = 2, Q2 = 3, Q3 = 7, Q4 = 25, and Q5 = 121. Although the first three are
prime, the next two are not. In fact, a CAS tells us that Q4 through Q10 = 3,628,801 = 11 · 329,891 are all
not prime. The only other primes among the first 100 are Q11 , Q27 , Q37 , Q41 , Q73 , and Q77 .

18. We can give a nice proof by contraposition here, by showing that if n is not prime, then the sum of its divisors
is not n + 1. There are two cases. If n = 1, then the sum of the divisors is 1 &= 1 + 1. Otherwise n is
composite, so can be written as n = ab , where both a and b are divisors of n different from 1 and from n
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(although it might happen that a = b). Then n has at least the three distinct divisors 1, a , and n , and their
sum is clearly not equal to n + 1. This completes the proof by contraposition. One should also observe that
the converse of this statement is also true: if n is prime, then the sum of its divisors is n + 1 (since its only
divisors are 1 and itself).

20. This question is asking for the smallest pair of primes that differ by 6. Looking at a table of prime numbers
tells us that these are 23 and 29, so the five smallest consecutive composite integers are 24, 25, 26, 27, and
28.

22. Using a computer algebra system, such as Maple with its ability to loop and its built-in primeness tester, is
the only reasonable way to solve this problem. The answer is 7, 37, 67, 97, 127, 157 (i.e., the common
difference is 30). The analogous question for seven primes has common difference 150. A search for a string
of eight primes in arithmetic progression found one with starting value 17 and common difference 6930.

24. There is one 0 at the end of this number for every factor of 2 in all of the numbers from 1 to 100. We count
them as follows. All the even numbers have a factor of 2, and there are 100/2 = 50 of these. All the multiples
of 4 have another factor of 2, and there are 100/4 = 25 of these. All the multiples of 8 have another factor
of 2, and there are $100/8% = 12 of these, and so on. Thus the answer is 50 + 25 + 12 + 6 + 3 + 1 = 97.

26. We need to divide successively by 233, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, and 1, a total of 12 divisions.

28. a) The first statement is clear. For the second, if a and b are both even, then certainly 2 is a factor of their
greatest common divisor, and the complementary factor must be the greatest common divisor of the numbers
obtained by dividing out this 2. For the third statement, if a is even and b is odd, then the factor of 2 in
a will not appear in the greatest common divisor, so we can ignore it. Finally, the last statement follows
from Lemma 1 in Section 4.3, taking q = 1 (despite the notation, nothing in Lemma 1 required q to be the
quotient).
b) All the steps involved in implementing part (a) as an algorithm require only comparisons, subtractions,
and divisions of even numbers by 2. Since division by 2 is a shift of one bit to the right, only the operations
mentioned here are used. (Note that the algorithm needs two more reductions: if a is odd and b is even, then
gcd(a, b) = gcd(a, b/2), and if a < b , then interchange a and b .)
c) We show the operation of the algorithm as a string of equalities; each equation is one step.

gcd(1202, 4848) = gcd(4848, 1202) = 2 gcd(2424, 601) = 2 gcd(1212, 601) = 2 gcd(606, 601)

= 2 gcd(303, 601) = 2 gcd(601, 303) = 2 gcd(298, 303) = 2 gcd(303, 298)

= 2 gcd(303, 149) = 2 gcd(154, 149) = 2 gcd(77, 149) = 2 gcd(149, 77)

= 2 gcd(72, 77) = 2 gcd(77, 72) = 2 gcd(77, 36) = 2 gcd(77, 18)

= 2 gcd(77, 9) = 2 gcd(68, 9) = 2 gcd(34, 9) = 2 gcd(17, 9)

= 2 gcd(8, 9) = 2 gcd(9, 8) = 2 gcd(9, 4) = 2 gcd(9, 2)

= 2 gcd(9, 1) = 2 gcd(8, 1) = 2 gcd(4, 1) = 2 gcd(2, 1)

= 2 gcd(1, 1) = 2

30. Let’s try the strategy used in the proof of Theorem 3 in Section 4.3. Suppose that p1 , p2 , . . . , pn are the
only primes of the form 3k + 1. Notice that the product of primes of this form is again of this form, because
(3k1 + 1)(3k2 + 1) = 9k1k2 + 3k1 + 3k2 + 1 = 3(3k1k2 + k1 + k2) + 1. We could try looking at 3p1p2 · · · pn + 1,
which is again of this form. By the fundamental theorem of arithmetic, it has prime factors, and clearly no
pi is a factor. Unfortunately, we cannot be guaranteed that any of its prime factors are of the form 3k + 1,
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because the product of two primes not of this form, namely of the form 3k + 2, is of the form 3k + 1; indeed,
(3k1 + 2)(3k2 + 2) = 9k1k2 + 6k1 + 6k2 + 4 = 3(3k1k2 + 2k1 + 2k2 + 1) + 1. Thus the proof breaks down at
this point.

32. We give a proof by contradiction. Suppose that p > 3
√
n , where p is the smallest prime factor of n , but n/p

is not prime and not equal to 1. Then p3 > n , so p2 > n/p . By our assumption, n/p = a · b , where a, b > 1.
Because a · b < p2 , at least one of a and b is less than p ; assume without loss of generality that it is a .
Then a is a divisor of n smaller than p , so any prime factor of a is a prime divisor of n smaller than p , in
contradiction to our assumptions.

34. We need to arrange that every pair of the four numbers has a factor in common. There are six such pairs, so
let us use the first six prime numbers as the common factors. Call the numbers a , b , c , and d . We will give
a and b a common factor of 2; a and c a common factor of 3; a and d a common factor of 5; b and c a
common factor of 7; b and d a common factor of 11; and c and d a common factor of 13. The simplest way
to accomplish this is to let a = 2 · 3 · 5 = 30; b = 2 · 7 · 11 = 154; c = 3 · 7 · 13 = 273; and d = 5 · 11 · 13 = 715.
The numbers are mutually relatively prime, since no number is a factor of all of them (indeed, each prime is
a factor of only two of them). Many other examples are possible, of course.

36. If x ≡ 3 (mod 9), then x = 3 + 9t for some integer t . In particular this equation tells us that 3 |x . On the
other hand the first congruence says that x = 2 + 6s = 2 + 3 · (2s) for some integer s , which implies that
the remainder when x is divided by 3 is 2. Obviously these two conclusions are inconsistent, so there is no
simultaneous solution to the two congruences.

38. a) There are two things to prove here. First suppose that gcd(m1,m2) | a1−a2 ; say a1−a2 = k ·gcd(m1,m2).
By Theorem 6 in Section 4.3, there are integers s and t such that gcd(m1,m2) = sm1+tm2 . Multiplying both
sides by k and substituting into our first equation we have a1 − a2 = ksm1 + ktm2 , which can be rewritten
as a1 − ksm1 = a2 + ktm2 . This common value is clearly congruent to a1 modulo m1 and congruent to a2

modulo m2 , so it is a solution to the given system. Conversely, suppose that there is a solution x to the
system. Then x = a1 + sm1 = a2 + tm2 for some integers s and t . This says that a1 − a2 = tm2 − sm1 .
But gcd(m1,m2) divides both m1 and m2 and therefore divides the right-hand side of this last equation.
Therefore it also divides the left-hand side, a1 − a2 , as desired.
b) We follow the idea sketched in Exercises 29 and 30 of Section 4.4. First we show that if a ≡ b (mod m1)
and a ≡ b (mod m2), then a ≡ b (mod lcm(m1,m2)). The first hypothesis says that m1 | a − b ; the second
says that m2 | a− b . Therefore a− b is a common multiple of m1 and m2 . If a− b were not also a multiple of
lcm(m1,m2), then (a−b) mod lcm(m1,m2) would be a common multiple as well, contradicting the definition
of lcm(m1,m2). Therefore a− b is a multiple of lcm(m1,m2), i.e., a ≡ b (mod lcm(m1,m2)). Now suppose
that there were two solutions to the given system of congruences. By what we have just proved, since these
two solutions are congruent modulo m1 (since they are both congruent to a1 ) and congruent modulo m2

(since they are both congruent to a2 ), they must be congruent to each other modulo lcm(m1,m2). That is
precisely what we wanted to prove.

40. Note that the prime factorization of 35 is 5 ·7. So it suffices to show that 5 |n12−1 and 7 |n12−1 for integers
n relatively prime to 5 and 7. For such integers, Fermat’s little theorem tells us that n4 ≡ 1 (mod 5) and
n6 ≡ 1 (mod 7). Then we have n12 − 1 ≡ (n4)3 − 1 ≡ 13 − 1 = 0 (mod 5) and n12 − 1 ≡ (n6)2 − 1 ≡ 12 − 1 =
0 (mod 7).

42. In each case we just compute (a1 + a3 + · · · + a13) + 3(a2 + a4 + · · · + a12) mod 10 to make sure that it
equals 0.
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a) (9 + 8 + 0 + 3 + 0 + 7 + 1) + 3(7 + 0 + 7 + 2 + 6 + 9) mod 10 = 1; invalid
b) (9 + 8 + 4 + 4 + 4 + 2 + 1) + 3(7 + 0 + 5 + 2 + 5 + 1) mod 10 = 2; invalid
c) (9 + 8 + 1 + 1 + 8 + 1 + 0) + 3(7 + 3 + 6 + 4 + 4 + 0) mod 10 = 0; valid
d) (9 + 8 + 2 + 1 + 0 + 7 + 9) + 3(7 + 0 + 0 + 1 + 1 + 9) mod 10 = 0; valid

44. If two digits in odd locations, or two digits in even locations, are transposed, then the sum is the same, so this
error will not be detected.

46. Because 3, 7, and 1 are all relatively prime to 10, changing a single digit to a different value will change
the sum modulo 10 and the congruence will no longer hold. Transposition errors involving just d1 , d4 , and
d7 (and similarly for transpositions within {d2, d5, d8} or within {d3, d6, d9}) clearly cannot be detected. If a
transposition error occurs between two digits in different groups, it will be detected if the difference between
the transposed values is not 5 but will not be detected if it is (i.e., transposing a 1 with a 6, or a 2 with a 7,
and so on). To see why this is true in one case (the other cases are similar), suppose that d1 = x and d2 = y

are interchanged. Then the sum is increased by 3(y − x) + 7(x− y) = 4(x− y). This will be 0 modulo 10 if
and only if 4(x− y) is not a multiple of 10, which is equivalent to x− y not being a multiple of 5.

48. a) The seed is 23 (X); adding this mod 26 to the first character of the plaintext, 13 (N), gives 10, which is K.
Therefore the first character of the ciphertext is K. The next character of the keystream is the aforementioned
13 (N); add this to O (14) to get 1 (B), so the next character of the ciphertext is B. We continue in this
manner, producing the encrypted message KBK A LAL XBUQ XH RHGKLH.
b) Again the seed is 23 (X); adding this mod 26 to the first character of the plaintext, 13 (N), gives 10,
which is K. Therefore the first character of the ciphertext is K. The next character of the keystream is the
aforementioned K (10); add this to O (14) to get 24 (Y), so the next character of the ciphertext is Y. We
continue in this manner, producing the encrypted message KYU CU NUY RZLP IW ZDFNQU.


