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CHAPTER 6
Counting

SECTION 6.1 The Basics of Counting
2. By the product rule there are 27 · 37 = 999 offices.

4. By the product rule there are 12 · 2 · 3 = 72 different types of shirt.

6. By the product rule there are 4 · 6 = 24 routes.

8. There are 26 choices for the first initial, then 25 choices for the second, if no letter is to be repeated, then 24
choices for the third. (We interpret “repeated” broadly, so that a string like RWR , for example, is prohibited,
as well as a string like RRW .) Therefore by the product rule the answer is 26 · 25 · 24 = 15,600.

10. We have two choices for each bit, so there are 28 = 256 bit strings.

12. We use the sum rule, adding the number of bit strings of each length up to 6. If we include the empty string,
then we get 20 + 21 + 22 + 23 + 24 + 25 + 26 = 27 − 1 = 127 (using the formula for the sum of a geometric
progression—see Theorem 1 in Section 2.4).

14. If n = 0, then the empty string—vacuously—satisfies the condition (or does not, depending on how one views
it). If n = 1, then there is one, namely the string 1. If n ≥ 2, then such a string is determined by specifying
the n− 2 bits between the first bit and the last, so there are 2n−2 such strings.

16. We can subtract from the number of strings of length 4 of lower case letters the number of strings of length 4
of lower case letters other than x . Thus the answer is 264 − 254 = 66,351.

18. Recall that a DNA sequence is a sequence of letters, each of which is one of A, C, G, or T. Thus by the product
rule there are 45 = 1024 DNA sequences of length five if we impose no restrictions.
a) If the sequence must end with A, then there are only four positions at which to make a choice, so the
answer is 44 = 256.
b) If the sequence must start with T and end with G, then there are only three positions at which to make a
choice, so the answer is 43 = 64.
c) If only two letters can be used rather than four, the number of choices is 25 = 32.
d) As in part (c), there are 35 = 243 sequences that do not contain C.

20. Because neither 5 nor 31 is divisible by either 3 or 4, whether the ranges are meant to be inclusive or exclusive
of their endpoints is moot.
a) There are #31/3$ = 10 integers less than 31 that are divisible by 3, and #5/3$ = 1 of them is less than 5
as well. This leaves 10 − 1 = 9 numbers between 5 and 31 that are divisible by 3. They are 6, 9, 12, 15,
18, 21, 24, 27, and 30.
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b) There are #31/4$ = 7 integers less than 31 that are divisible by 4, and #5/4$ = 1 of them is less than 5
as well. This leaves 7 − 1 = 6 numbers between 5 and 31 that are divisible by 4. They are 8, 12, 16, 20,
24, and 28.
c) A number is divisible by both 3 and 4 if and only if it is divisible by their least common multiple, which
is 12. Obviously there are two such numbers between 5 and 31, namely 12 and 24. We could also work this
out as we did in the previous parts: #31/12$ − #5/12$ = 2− 0 = 2. Note also that the intersection of the sets
we found in the previous two parts is precisely what we are looking for here.

22. a) Every seventh number is divisible by 7. Therefore there are #999/7$ = 142 such numbers. Note that we
use the floor function, because the kth multiple of 7 does not occur until the number 7k has been reached.
b) For solving this part and the next four parts, we need to use the principle of inclusion–exclusion. Just
as in part (a), there are #999/11$ = 90 numbers in our range divisible by 11, and there are #999/77$ = 12
numbers in our range divisible by both 7 and 11 (the multiples of 77 are the numbers we seek). If we take
these 12 numbers away from the 142 numbers divisible by 7, we see that there are 130 numbers in our range
divisible by 7 but not 11.
c) As explained in part (b), the answer is 12.
d) By the principle of inclusion–exclusion, the answer, using the data from part (b), is 142 + 90 − 12 = 220.
e) If we subtract from the answer to part (d) the number of numbers divisible by both 7 and 11, we will have
the number of numbers divisible by neither of them; so the answer is 220 − 12 = 208.
f) If we subtract the answer to part (d) from the total number of positive integers less than 1000, we will
have the number of numbers divisible by exactly one of them; so the answer is 999 − 220 = 779.
g) If we assume that numbers are written without leading 0’s, then we should break the problem down into
three cases—one-digit numbers, two-digit numbers and three-digit numbers. Clearly there are 9 one-digit
numbers, and each of them has distinct digits. There are 90 two-digit numbers (10 through 99), and all but
9 of them have distinct digits, so there are 81 two-digit numbers with distinct digits. An alternative way to
compute this is to note that the first digit must be 1 through 9 (9 choices), and the second digit must be
something different from the first digit (9 choices out of the 10 possible digits), so by the product rule, we get
9 · 9 = 81 choices in all. This approach also tells us that there are 9 · 9 · 8 = 648 three-digit numbers with
distinct digits (again, work from left to right—in the ones place, only 8 digits are left to choose from). So the
final answer is 9 + 81 + 648 = 738.
h) It turns out to be easier to count the odd numbers with distinct digits and subtract from our answer to
part (g), so let us proceed that way. There are 5 odd one-digit numbers. For two-digit numbers, first choose
the ones digit (5 choices), then choose the tens digit (8 choices), since neither the ones digit value nor 0 is
available); therefore there are 40 such two-digit numbers. (Note that this is not exactly half of 81.) For the
three-digit numbers, first choose the ones digit (5 choices), then the hundreds digit (8 choices), then the tens
digit (8 choices, giving us 320 in all. So there are 5 + 40 + 320 = 365 odd numbers with distinct digits. Thus
the final answer is 738 − 365 = 373.

24. It will be useful to note first that there are exactly 9000 numbers in this range.
a) Every ninth number is divisible by 9, so the answer is one ninth of 9000 or 1000.
b) Every other number is even, so the answer is one half of 9000 or 4500.
c) We can reason from left to right. There are 9 choices for the first (left-most) digit (since it cannot be a 0),
then 9 choices for the second digit (since it cannot equal the first digit), then, in a similar way, 8 choices for
the third digit, and 7 choices for the right-most digit. Therefore there are 9 · 9 · 8 · 7 = 4536 ways to specify
such a number. In other words, there are 4536 such numbers. Note that this coincidentally turns out to be
almost exactly half of the numbers in the range.
d) Every third number is divisible by 3, so one third of 9000 or 3000 numbers in this range are divisible
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by 3. The remaining 6000 are not.
e) For this and the next three parts we need to note first that one fifth of the numbers in this range, or 1800 of
them, are divisible by 5, and one seventh of them, or 1286 are divisible by 7. [This last calculation is a little
more subtle than we let on, since 9000 is not divisible by 7 (the quotient is 1285.71 . . .). But 1001 is divisible
by 7, and 1001+1285 · 7 = 9996, so there are indeed 1286, and not 1285 such multiples. (By contrast, in the
range 1002 to 10001, inclusive, which also includes 9000 numbers, there are only 1285 multiples of 7.)] We
also need to know how many of these numbers are divisible by both 5 and 7, which means divisible by 35.
The answer, by the similar reasoning, is 257, namely those multiples from 29 · 35 = 1015 to 285 · 35 = 9975.
(One more note: We could also have come up with these numbers more formally, using the ideas in Section 8.5,
especially Example 2. We could find the number of multiples less than 10,000 and subtract the number of
multiples less than 1000.) Now to the problem at hand. The number of numbers divisible by 5 or 7 is
the number of numbers divisible by 5, plus the number of numbers divisible by 7, minus (because of having
overcounted) the number of numbers divisible by both. So our answer is 1800 + 1286 − 257 = 2829.
f) Since we just found that 2829 of these numbers are divisible by either 5 or 7, it follows that the rest of
them, 9000 − 2829 = 6171, are not.
g) We noted in the solution to part (e) that 1800 numbers are divisible by 5, and 257 of these are also
divisible by 7. Therefore 1800 − 257 = 1543 numbers in our range are divisible by 5 but not by 7.
h) We found this as part of our solution to part (e), namely 257.

26. a) There are 10 ways to choose the first digit, 9 ways to choose the second, and so on; therefore the answer
is 10 · 9 · 8 · 7 = 5040.
b) There are 10 ways to choose each of the first three digits and 5 ways to choose the last; therefore the
answer is 103 · 5 = 5000.
c) There are 4 ways to choose the position that is to be different from 9, and 9 ways to choose the digit to
go there. Therefore there are 4 · 9 = 36 such strings.

28. 103263 + 263103 = 35,152,000

30. 263103 + 264102 = 63,273,600

32. a) By the product rule, the answer is 268 = 208,827,064,576.
b) By the product rule, the answer is 26 · 25 · 24 · 23 · 22 · 21 · 20 · 19 = 62,990,928,000.
c) This is the same as part (a), except that there are only seven slots to fill, so the answer is 267 =
8,031,810,176.
d) This is similar to (b), except that there is only one choice in the first slot, rather than 26, so the answer
is 1 · 25 · 24 · 23 · 22 · 21 · 20 · 19 = 2,422,728,000.
e) This is the same as part (c), except that there are only six slots to fill, so the answer is 266 = 308,915,776.
f) This is the same as part (e); again there are six slots to fill, so the answer is 266 = 308,915,776.
g) This is the same as part (f), except that there are only four slots to fill, so the answer is 264 = 456,976.
We are assuming that the question means that the legal strings are BO????BO, where any letters can fill the
middle four slots.
h) By part (f), there are 266 strings that start with the letters BO in that order. By the same argument, there
are 266 strings that end that way. By part (g), there are 264 strings that both start and end with the letters
BO in that order. Therefore by the inclusion–exclusion principle, the answer is 266 +266−264 = 617,374,576.

34. In each case the answer is n10 , where n is the number of elements in the codomain, since there are n choices
for a function value for each of the 10 elements in the domain.
a) 210 = 1024 b) 310 = 59,049 c) 410 = 1,048,576 d) 510 = 9,765,625
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36. There are 2n such functions, since there is a choice of 2 function values for each element of the domain.

38. By our solution to Exercise 39, the answer is (n+ 1)5 in each case, where n is the number of elements in the
codomain.
a) 25 = 32 b) 35 = 243 c) 65 = 7776 d) 105 = 100,000

40. We know that there are 2100 subsets in all. Clearly 101 of them do not have more than one element, namely
the empty set and the 100 sets consisting of 1 element. Therefore the answer is 2100 − 101 ≈ 1.3 × 1030 .

42. Recall that a DNA sequence is a sequence of letters, each of which is one of A, C, G, or T. Thus by the product
rule there are 44 = 256 DNA sequences of length four if we impose no restrictions.
a) If the letter T cannot be used, then the number of choices is 34 = 81.
b) The sequence must be either ACGx or xACG, where x is one of the four letters. These two cases do not
overlap, so the answer is 4 + 4 = 8.
c) There are four positions and four letters, each used exactly once. There are 4 choices for the first position,
then 3 for the second, 2 for the third, and 1 for the fourth. Therefore the answer is 4 · 3 · 2 · 1 = 24.
d) There are four ways to choose which letter is to be occur twice and three ways to decide which of the other
letters to leave out, so there are 4 · 3 = 12 choices of the letters for the sequence. There are 4 positions the
first (alphabetically) of the single-use letters can occupy, and then 3 positions for the second single-use letter,
a total of 4 · 3 = 12 different sequences once we have determined the letters and their frequencies. Therefore
the answer is 12 · 12 = 144.

44. If we ignore the fact that the table is round and just count ordered arrangements of length 4 from the 10 people,
then we get 10 · 9 · 8 · 7 = 5040 arrangements. However, we can rotate the people around the table in 4 ways
and get the same seating arrangement, so this overcounts by a factor of 4. (For example, the sequence Mary–
Debra–Cristina–Julie gives the same circular seating as the sequence Julie–Mary–Debra–Cristina.) Therefore
the answer is 5040/4 = 1260.

46. a) We first place the bride in any of the 6 positions. Then, from left to right in the remaining positions, we
choose the other five people to be in the picture; this can be done in 9 · 8 · 7 · 6 · 5 = 15120 ways. Therefore
the answer is 6 · 15120 = 90,720.
b) We first place the bride in any of the 6 positions, and then place the groom in any of the 5 remaining
positions. Then, from left to right in the remaining positions, we choose the other four people to be in the
picture; this can be done in 8 · 7 · 6 · 5 = 1680 ways. Therefore the answer is 6 · 5 · 1680 = 50,400.
c) From part (a) there are 90720 ways for the bride to be in the picture. There are (from part (b)) 50400
ways for both the bride and groom to be in the picture. Therefore there are 90720 − 50400 = 40320 ways
for just the bride to be in the picture. Symmetrically, there are 40320 ways for just the groom to be in the
picture. Therefore the answer is 40320 + 40320 = 80,640.

48. There are 25 strings that begin with two 0’s (since there are two choices for each of the last five bits). Similarly
there are 24 strings that end with three 1’s . Furthermore, there are 22 strings that both begin with two 0’s
and end with three 1’s (since only bits 3 and 4 are free to be chosen). By the inclusion–exclusion principle,
there are 25 + 24 − 22 = 44 such strings in all.

50. First we count the number of bit strings of length 10 that contain five consecutive 0’s . We will base the count
on where the string of five or more consecutive 0’s starts. If it starts in the first bit, then the first five bits
are all 0’s , but there is free choice for the last five bits; therefore there are 25 = 32 such strings. If it starts in
the second bit, then the first bit must be a 1, the next five bits are all 0’s , but there is free choice for the last
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four bits; therefore there are 24 = 16 such strings. If it starts in the third bit, then the second bit must be
a 1 but the first bit and the last three bits are arbitrary; therefore there are 24 = 16 such strings. Similarly,
there are 16 such strings that have the consecutive 0’s starting in each of positions four, five, and six. This
gives us a total of 32 + 5 · 16 = 112 strings that contain five consecutive 0’s . Symmetrically, there are 112
strings that contain five consecutive 1’s . Clearly there are exactly two strings that contain both (0000011111
and 1111100000). Therefore by the inclusion–exclusion principle, the answer is 112 + 112 − 2 = 222.

52. This is a straightforward application of the inclusion–exclusion principle: 38+23−7 = 54 (we need to subtract
the 7 double majors counted twice in the sum).

54. Order matters here, since the initials RSZ, for example, are different from the initials SRZ. By the sum rule
we can add the number of initials formable with two, three, four, and five letters. By the product rule, these
are 262 , 263 , 264 , and 265 , respectively, so the answer is 676 + 17576 + 456976 + 11881376 = 12,356,604.

56. We need to compute the number of variable names of length i for i = 1, 2, . . . , 8, and add. A variable name
of length i is specified by choosing a first character, which can be done in 53 ways (2 · 26 letters and 1
underscore to choose from), and i − 1 other characters, each of which can be done in 53 + 10 = 63 ways.
Therefore the answer is

8∑

i=1

52 · 63i−1 = 52 · 638 − 1
63 − 1

≈ 2.1 × 1014 .

58. There are 10 − 1 = 9 country codes of length 1, 102 = 100 of length 2, and 103 = 1000 of length 3, for a
total of 1109 country codes. The number of numbers following the country code is 10 + 102 + 103 + · · · +
1015 ; by the formula for a geometric series (Theorem 1 in Section 2.4), this equals 10(1015 − 1)/(10 − 1) =
1,111,111,111,111,110. Therefore there are 1109 · 1,111,111,111,111,110 = 1,232,222,222,222,220,990 possible
numbers.

60. By the sum and product rules, the answer is 263 + 264 + 265 + 266 = 321,271,704.

62. Let P be the set of numbers in {1, 2, 3, . . . , n} that are divisible by p , and similarly define the set Q . We
want to count the numbers not divisible by either p or q , so we want n − |P ∪ Q| . By the principle of
inclusion–exclusion, |P ∪ Q| = |P | + |Q| − |P ∩ Q| . Every pth number is divisible by p , so |P | = #n/p$ .
Similarly |Q| = #n/q$ . Clearly n is the only positive integer not exceeding n that is divisible by both p

and q , so |P ∩ Q| = 1. Therefore the number of positive integers not exceeding n that are relatively prime
to n is n− (#n/p$ + #n/q$ − 1) = n− #n/p$ − #n/q$ + 1.

64. We draw the tree, with its root at the top. We show a branch for each of the possibilities 0 and 1, for each
bit in order, except that we do not allow three consecutive 0’s . Since there are 13 leaves, the answer is 13.
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66. The tree is a bit too large to draw in its entirety. We show only half of it, namely the half corresponding
to the National League team’s having won the first game. By symmetry, the final answer will be twice the
number computed with this tree. A branch to the left indicates a win by the National League team; a branch
to the right, a win by the American league team. No further branching occurs whenever one team has won
four games. Since we see 35 leaves, the answer is 70.

68. a) It is more convenient to branch on bottle size first. Note that there are a different number of branches
coming off each of the nodes at the second level. The number of leaves in the tree is 17, which is the answer.

b) We can add the number of different varieties for each of the sizes. The 12-ounce bottle has 6, the 20-ounce
bottle has 5, the 32-once bottle has 2, and the 64-ounce bottle has 4. Therefore 6 + 5 + 2 + 4 = 17 different
types of bottles need to be stocked.

70. There are 2n lines in the truth table, since each of the n propositions can have 2 truth values. Each line can
be filled in with T or F, so there are a total of 22n

possibilities.

72. We want to show that a procedure consisting of m tasks can be done in n1n2 · · ·nm ways, if the ith task
can be done in ni ways. The product rule stated in the text is the basis step, m = 2. Assume the inductive
hypothesis. Then to do the procedure we have to do each of the first m tasks, which by the inductive
hypothesis can be done in n1n2 · · ·nm ways, and then the (m + 1)st task, so there are (n1n2 · · ·nm)nm+1

possibilities, as desired.

74. a) The largest value of TOTAL LENGTH is 216 − 1, since this would be the number represented by a string
of 16 1’s . So the maximum length of a datagram is 65,535 octets (or bytes).
b) The largest value of HLEN is 24 − 1 = 15, since this would be the number represented by a string of four
1’s . So the maximum length of a header is 15 32-bit blocks. Since there are four 8-bit octets (or bytes) in a
block, the maximum length of the header is 4 · 15 = 60 octets.
c) We saw in part (a) that the maximum total length is 65,535 octets. If at least 20 of these must be devoted
to the header, the data area can be at most 65,515 octets long.
d) There are 28 = 256 different octets, since each bit of an octet can be 0 or 1. In part (c) we saw that the data
area could be at most 65,515 octets long. So the answer is 25665515 , which is a huge number (approximately
7 × 10157775 , according to a computer algebra system).
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SECTION 6.2 The Pigeonhole Principle
2. This follows from the pigeonhole principle, with k = 26.

4. We assume that the woman does not replace the balls after drawing them.
a) There are two colors: these are the pigeonholes. We want to know the least number of pigeons needed to
insure that at least one of the pigeonholes contains three pigeons. By the generalized pigeonhole principle,
the answer is 5. If five balls are selected, at least )5/2* = 3 must have the same color. On the other hand
four balls is not enough, because two might be red and two might be blue. Note that the number of balls was
irrelevant (assuming that it was at least 5).
b) She needs to select 13 balls in order to insure at least three blue ones. If she does so, then at most 10 of
them are red, so at least three are blue. On the other hand, if she selects 12 or fewer balls, then 10 of them
could be red, and she might not get her three blue balls. This time the number of balls did matter.

6. There are only d possible remainders when an integer is divided by d , namely 0, 1, . . . , d − 1. By the
pigeonhole principle, if we have d + 1 remainders, then at least two must be the same.

8. This is just a restatement of the pigeonhole principle, with k = |T | .

10. The midpoint of the segment whose endpoints are (a, b) and (c, d) is ((a+ c)/2, (b+ d)/2). We are concerned
only with integer values of the original coordinates. Clearly the coordinates of these fractions will be integers
as well if and only if a and c have the same parity (both odd or both even) and b and d have the same parity.
Thus what matters in this problem is the parities of the coordinates. There are four possible pairs of parities:
(odd, odd), (odd, even), (even, odd), and (even, even). Since we are given five points, the pigeonhole principle
guarantees that at least two of them will have the same pair of parities. The midpoint of the segment joining
these two points will therefore have integer coordinates.

12. This is similar in spirit to Exercise 10. Working modulo 5 there are 25 pairs: (0, 0), (0, 1), . . . , (4, 4). Thus
we could have 25 ordered pairs of integers (a, b) such that no two of them were equal when reduced modulo 5.
The pigeonhole principle, however, guarantees that if we have 26 such pairs, then at least two of them will
have the same coordinates, modulo 5.

14. a) We can group the first ten positive integers into five subsets of two integers each, each subset adding
up to 11: {1, 10} , {2, 9} , {3, 8} , {4, 7} , and {5, 6} . If we select seven integers from this set, then by the
pigeonhole principle at least two of them come from the same subset. Furthermore, if we forget about these
two in the same group, then there are five more integers and four groups; again the pigeonhole principle
guarantees two integers in the same group. This gives us two pairs of integers, each pair from the same group.
In each case these two integers have a sum of 11, as desired.
b) No. The set {1, 2, 3, 4, 5, 6} has only 5 and 6 from the same group, so the only pair with sum 11 is 5
and 6.

16. We can apply the pigeonhole principle by grouping the numbers cleverly into pairs (subsets) that add up to 16,
namely {1, 15} , {3, 13} , {5, 11} , and {7, 9} . If we select five numbers from the set {1, 3, 5, 7, 9, 11, 13, 15} ,
then at least two of them must fall within the same subset, since there are only four subsets. Two numbers in
the same subset are the desired pair that add up to 16. We also need to point out that choosing four numbers
is not enough, since we could choose {1, 3, 5, 7} , and no pair of them add up to more than 12.

18. a) If not, then there would be 4 or fewer male students and 4 or fewer female students, so there would be
4 + 4 = 8 or fewer students in all, contradicting the assumption that there are 9 students in the class.
b) If not, then there would be 2 or fewer male students and 6 or fewer female students, so there would be
2 + 6 = 8 or fewer students in all, contradicting the assumption that there are 9 students in the class.
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20. One maximal length increasing sequence is 5, 7, 10, 15, 21. One maximal length decreasing sequence is 22, 7, 3.
See Exercise 25 for an algorithm.

22. This follows immediately from Theorem 3, with n = 10.

24. This problem was on the International Mathematical Olympiad in 2001, a test taken by the six best high
school students from each country. Here is a paraphrase of a solution posted on the Web by Steve Olson,
author of a book about this competition entitled Count Down. Make a table listing the 21 boys at the top of
each column and the 21 girls to the left of each row. This table will contain 21 · 21 = 441 boxes. In each box
write the number of a problem solved by both that girl and that boy. From the given information, each box
will contain a number. Each contestant solved at most six problems, so only six different numbers can appear
in any given row or column of 21 boxes. Because 5 ·2 = 10, at least 21−10 = 11 of the boxes in any given row
or column must contain problem numbers that appear three or more times in that row. (This is an application
of the idea of the pigeonhole principle.) In each row color red all the boxes containing problem numbers that
appear at least three times in that row. So each row will have at least 11 red boxes, and therefore there will be
at least 11 · 21 = 231 boxes colored red. Repeat the process with the columns, using the color blue. Because
at least 231 boxes are red and 231 are blue, and there are only 441 boxes in all, some of the boxes will be
both red and blue. (Here is the second place where the pigeonhole principle is used.) The problem number in
a doubly-colored box represents a problem solved by at least three girls and at least three boys.

26. Let the people be A , B , C , D , and E . Suppose the following pairs are friends: A−B , B−C , C−D , D−E ,
and E−A . The other five pairs are enemies. In this example, there are no three mutual friends and no three
mutual enemies.

28. Let A be one of the people. She must have either 10 friends or 10 enemies, since if there were 9 or fewer of
each, then that would account for at most 18 of the 19 other people. Without loss of generality assume that
A has 10 friends. By Exercise 27 there are either 4 mutual enemies among these 10 people, or 3 mutual
friends. In the former case we have our desired set of 4 mutual enemies; in the latter case, these 3 people
together with A form the desired set of 4 mutual friends.

30. This is clear by symmetry, since we can just interchange the notions of friends and enemies.

32. There are 99,999,999 possible positive salaries less than one million dollars, i.e., from $0.01 to $999,999.99.
By the pigeonhole principle, if there were more than this many people with positive salaries less than one
million dollars, then at least two of them must have the same salary.

34. This follows immediately from Theorem 2, with N = 8,008,278 and k = 1,000,001 (the number of hairs can
be anywhere from 0 to a million).

36. Let K(x) be the number of other computers that computer x is connected to. The possible values for K(x)
are 1, 2, 3, 4, 5. Since there are 6 computers, the pigeonhole principle guarantees that at least two of the values
K(x) are the same, which is what we wanted to prove.

38. This is similar to Example 9. Label the computers C1 through C8 , and label the printers P1 through P4 . If
we connect Ck to Pk for k = 1, 2, 3, 4 and connect each of the computers C5 through C8 to all the printers,
then we have used a total of 4 + 4 · 4 = 20 cables. Clearly this is sufficient, because if computers C1 through
C4 need printers, then they can use the printers with the same subscripts, and if any computers with higher
subscripts need a printer instead of one or more of these, then they can use the printers that are not being
used, since they are connected to all the printers. Now we must show that 19 cables are not enough. Since
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there are 19 cables and 4 printers, the average number of computers per printer is 19/4, which is less than 5.
Therefore some printer must be connected to fewer than 5 computers (the average of a set of numbers cannot
be bigger than each of the numbers in the set). That means it is connected to 4 or fewer computers, so there
are at least 4 computers that are not connected to it. If those 4 computers all needed a printer simultaneously,
then they would be out of luck, since they are connected to at most the 3 other printers.

40. Let K(x) be the number of other people at the party that person x knows. The possible values for K(x) are
0, 1, . . . , n− 1, where n ≥ 2 is the number of people at the party. We cannot apply the pigeonhole principle
directly, since there are n pigeons and n pigeonholes. However, it is impossible for both 0 and n − 1 to be
in the range of K , since if one person knows everybody else, then nobody can know no one else (we assume
that “knowing” is symmetric). Therefore the range of K has at most n − 1 elements, whereas the domain
has n elements, so K is not one-to-one, precisely what we wanted to prove.

42. a) The solution of Exercise 41, with 24 replaced by 2 and 149 replaced by 127, tells us that the statement
is true.
b) The solution of Exercise 41, with 24 replaced by 23 and 149 replaced by 148, tells us that the statement
is true.
c) We begin in a manner similar to the solution of Exercise 41. Look at a1 , a2 , . . . , a75 , a1+25, . . . , a75+25,
where ai is the total number of matches played up through and including hour i . Then 1 ≤ a1 < a2 < · · · <
a75 ≤ 125, and 26 ≤ a1 + 25 < a2 + 25 < · · · < a75 + 25 ≤ 150. Now either these 150 numbers are precisely
all the number from 1 to 150, or else by the pigeonhole principle we get, as in Exercise 41, ai = aj + 25 for
some i and j and we are done. In the former case, however, since each of the numbers ai +25 is greater than
or equal to 26, the numbers 1, 2, . . . , 25 must all appear among the ai’s . But since the ai’s are increasing,
the only way this can happen is if a1 = 1, a2 = 2, . . . , a25 = 25. Thus there were exactly 25 matches in the
first 25 hours.
d) We need a different approach for this part, an approach, incidentally, that works for many numbers besides
30 in this setting. Let a1 , a2 , . . . , a75 be as before, and note that 1 ≤ a1 < a2 < · · · < a75 ≤ 125. By
the pigeonhole principle two of the numbers among a1 , a2 , . . . , a31 are congruent modulo 30. If they differ
by 30, then we have our solution. Otherwise they differ by 60 or more, so a31 ≥ 61. Similarly, among a31

through a61 , either we find a solution, or two numbers must differ by 60 or more; therefore we can assume
that a61 ≥ 121. But this means that a66 ≥ 126, a contradiction.

44. Look at the pigeonholes {1000, 1001} , {1002, 1003} , {1004, 1005} , . . . , {1098, 1099} . There are clearly 50
sets in this list. By the pigeonhole principle, if we have 51 numbers in the range from 1000 to 1099 inclusive,
then at least two of them must come from the same set. These are the desired two consecutive house numbers.

46. Suppose this statement were not true. Then for each i , the ith box contains at most ni − 1 objects. Adding,
we have at most (n1 − 1) + (n2 − 1) + · · · + (nt − 1) = n1 + n2 + · · · + nt − t objects in all, contradicting the
fact that there were n1 + n2 + · · · + nt − t + 1 objects in all. Therefore the statement must be true.
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SECTION 6.3 Permutations and Combinations
2. P (7, 7) = 7! = 5040

4. There are 10 combinations and 60 permutations. We list them in the following way. Each combination is
listed, without punctuation, in increasing order, followed by the five other permutations involving the same
numbers, in parentheses, without punctuation.

123 (132 213 231 312 321) 124 (142 214 241 412 421) 125 (152 215 251 512 521)

134 (143 314 341 413 431) 135 (153 315 351 513 531) 145 (154 415 451 514 541)

234 (243 324 342 423 432) 235 (253 325 352 523 532)

245 (254 425 452 524 542) 345 (354 435 453 534 543)

6. a) C(5, 1) = 5 b) C(5, 3) = C(5, 2) = 5 · 4/2 = 10 c) C(8, 4) = 8 · 7 · 6 · 5/(4 · 3 · 2) = 70
d) C(8, 8) = 1 e) C(8, 0) = 1 f) C(12, 6) = 12 · 11 · 10 · 9 · 8 · 7/(6 · 5 · 4 · 3 · 2) = 924

8. P (5, 5) = 5! = 120

10. P (6, 6) = 6! = 720

12. a) To specify a bit string of length 12 that contains exactly three 1’s , we simply need to choose the three
positions that contain the 1’s . There are C(12, 3) = 220 ways to do that.
b) To contain at most three 1’s means to contain three 1’s , two 1’s, one 1, or no 1’s. Reasoning as in
part (a), we see that there are C(12, 3)+C(12, 2)+C(12, 1)+C(12, 0) = 220+66+12+1 = 299 such strings.
c) To contain at least three 1’s means to contain three 1’s , four 1’s , five 1’s , six 1’s , seven 1’s, eight 1’s ,
nine 1’s , 10 1’s , 11 1’s , or 12 1’s . We could reason as in part (b), but we would have too many numbers
to add. A simpler approach would be to figure out the number of ways not to have at least three 1’s (i.e., to
have two 1’s, one 1, or no 1’s) and then subtract that from 212 , the total number of bit strings of length 12.
This way we get 4096 − (66 + 12 + 1) = 4017.
d) To have an equal number of 0’s and 1’s in this case means to have six 1’s . Therefore the answer is
C(12, 6) = 924.

14. C(99, 2) = 99 · 98/2 = 4851

16. We need to compute C(10, 1) + C(10, 3) + C(10, 5) + C(10, 7) + C(10, 9) = 10 + 120 + 252 + 120 + 10 = 512.
(In the next section we will see that there are just as many subsets with an odd number of elements as there
are subsets with an even number of elements (Exercise 31 in Section 6.4). Since there are 210 = 1024 subsets
in all, the answer is 1024/2 = 512, in agreement with our computation.)

18. a) Each flip can be either heads or tails, so there are 28 = 256 possible outcomes.
b) To specify an outcome that has exactly three heads, we simply need to choose the three flips that came up
heads. There are C(8, 3) = 56 such outcomes.
c) To contain at least three heads means to contain three heads, four heads, five heads, six heads, seven heads,
or eight heads. Reasoning as in part (b), we see that there are C(8, 3)+C(8, 4)+C(8, 5)+C(8, 6)+C(8, 7)+
C(8, 8) = 56 + 70 + 56 + 28 + 8 + 1 = 219 such outcomes. We could also subtract from 256 the number of
ways to get two or fewer heads, namely 28 + 8 + 1 = 37. Since 256 − 37 = 219, we obtain the same answer
using this alternative method.
d) To have an equal number of heads and tails in this case means to have four heads. Therefore the answer
is C(8, 4) = 70.
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20. a) There are C(10, 3) ways to choose the positions for the 0’s , and that is the only choice to be made, so the
answer is C(10, 3) = 120.
b) There are more 0’s than 1’s if there are fewer than five 1’s. Using the same reasoning as in part (a),
together with the sum rule, we obtain the answer C(10, 0) + C(10, 1) + C(10, 2) + C(10, 3) + C(10, 4) =
1 + 10 + 45 + 120 + 210 = 386. Alternatively, by symmetry, half of all cases in which there are not five 0’s
have more 0’s than 1’s; therefore the answer is (210 − C(10, 5)/2 = (1024 − 252)/2 = 386.
c) We want the number of bit strings with 7, 8, 9, or 10 1’s. By the same reasoning as above, there are
C(10, 7) + C(10, 8) + C(10, 9) + C(10, 10) = 120 + 45 + 10 + 1 = 176 such strings.
d) If a string does not have at least three 1’s , then it has 0, 1, or 2 1’s . There are C(10, 0) + C(10, 1) +
C(10, 2) = 1+10+45 = 56 such strings. There are 210 = 1024 strings in all. Therefore there are 1024−56 =
968 strings with at least three 1’s .

22. a) If ED is to be a substring, then we can think of that block of letters as one superletter, and the problem
is to count permutations of seven items—the letters A , B , C , F , G , and H , and the superletter ED .
Therefore the answer is P (7, 7) = 7! = 5040.
b) Reasoning as in part (a), we see that the answer is P (6, 6) = 6! = 720.
c) As in part (a), we glue BA into one item and glue FGH into one item. Therefore we need to permute
five items, and there are P (5, 5) = 5! = 120 ways to do it.
d) This is similar to part (c). Glue AB into one item, glue DE into one item, and glue GH into one item,
producing five items, so the answer is P (5, 5) = 5! = 120.
e) If both CAB and BED are substrings, then CABED has to be a substring. So we are really just
permuting four items: CABED , F , G , and H . Therefore the answer is P (4, 4) = 4! = 24.
f) There are no permutations with both of these substrings, since B cannot be followed by both C and F at
the same time.

24. First position the women relative to each other. Since there are 10 women, there are P (10, 10) ways to
do this. This creates 11 slots where a man (but not more than one man) may stand: in front of the first
woman, between the first and second women, . . . , between the ninth and tenth women, and behind the tenth
woman. We need to choose six of these positions, in order, for the first through six man to occupy (order
matters, because the men are distinct people). This can be done is P (11, 6) ways. Therefore the answer is
P (10, 10) · P (11, 6) = 10! · 11!/5! = 1,207,084,032,000.

26. a) This is just a matter of choosing 10 players from the group of 13, since we are not told to worry about
what positions they play; therefore the answer is C(13, 10) = 286.
b) This is the same as part (a), except that we need to worry about the order in which the choices are made,
since there are 10 distinct positions to be filled. Therefore the answer is P (13, 10) = 13!/3! = 1,037,836,800.
c) There is only one way to choose the 10 players without choosing a woman, since there are exactly 10 men.
Therefore (using part (a)) there are 286− 1 = 285 ways to choose the players if at least one of them must be
a woman.

28. We are just being asked for the number of strings of T’s and F’s of length 40 with exactly 17 T’s. The only
choice is which 17 of the 40 positions are to have the T’s, so the answer is C(40, 17) ≈ 8.9 × 1010 .

30. a) There are C(16, 5) ways to select a committee if there are no restrictions. There are C(9, 5) ways to select
a committee from just the 9 men. Therefore there are C(16, 5) − C(9, 5) = 4368 − 126 = 4242 committees
with at least one woman.
b) There are C(16, 5) ways to select a committee if there are no restrictions. There are C(9, 5) ways to select
a committee from just the 9 men. There are C(7, 5) ways to select a committee from just the 7 men. These
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two possibilities do not overlap, since there are no ways to select a committee containing neither men nor
women. Therefore there are C(16, 5) − C(9, 5) − C(7, 5) = 4368 − 126 − 21 = 4221 committees with at least
one woman and at least one man.

32. a) The only reasonable way to do this is by subtracting from the number of strings with no restrictions the
number of strings that do not contain the letter a . The answer is 266 − 256 = 308915776 − 244140625 =
64,775,151.
b) If our string is to contain both of these letters, then we need to subtract from the total number of strings the
number that fail to contain one or the other (or both) of these letters. As in part (a), 256 strings fail to contain
an a ; similarly 256 fail to contain a b . This is overcounting, however, since 246 fail to contain both of these
letters. Therefore there are 256 + 256 − 246 strings that fail to contain at least one of these letters. Therefore
the answer is 266 − (256 + 256 − 246) = 308915776 − (244140625 + 244140625 − 191102976) = 11,737,502.
c) First choose the position for the a ; this can be done in 5 ways, since the b must follow it. There are four
remaining positions, and these can be filled in P (24, 4) ways, since there are 24 letters left (no repetitions
being allowed this time). Therefore the answer is 5P (24, 4) = 1,275,120.
d) First choose the positions for the a and b ; this can be done in C(6, 2) ways, since once we pick two
positions, we put the a in the left-most and the b in the other. There are four remaining positions, and these
can be filled in P (24, 4) ways, since there are 24 letters left (no repetitions being allowed this time). Therefore
the answer is C(6, 2)P (24, 4) = 3,825,360.

34. Probably the best way to do this is just to break it down into the three cases by sex. There are C(15, 6) ways
to choose the committee to be composed only of women, C(15, 5)C(10, 1) ways if there are to be five women
and one man, and C(15, 4)C(10, 2) ways if there are to be four women and two men. Therefore the answer is
C(15, 6) + C(15, 5)C(10, 1) + C(15, 4)C(10, 2) = 5005 + 30030 + 61425 = 96,460.

36. Glue two 1’s to the right of each 0, giving us a collection of nine tokens: five 011’s and four 1’s . We are
asked for the number of strings consisting of these tokens. All that is involved is choosing the positions for
the 1’s among the nine positions in the string, so the answer is C(9, 4) = 126.

38. C(45, 3) · C(57, 4) · C(69, 5) = 14190 · 395010 · 11238513 ≈ 6.3 × 1016

40. By the reasoning given in the solution to Exercise 41, the answer is 5!/(3 · (5 − 3))! = 20.

42. The only difference between this problem and the problem solved in Exercise 41 is a factor of 2. Each seating
under the rules here corresponds to two seatings under the original rules, because we can change the order of
people around the table from clockwise to counterclockwise. Therefore we need to divide the formula there
by 2, giving us n!/(2r(n − r)!) . This assumes that r ≥ 3. If r = 1 then the problem is trivial (there are n

choices under both sets of rules). If r = 2, then we do not introduce the extra factor of 2, because clockwise
order and counterclockwise order are the same. In this case, both answers are just n!/(2(n − 2)!) , which is
C(n, 2), as one would expect.

44. We can solve this problem by breaking it down into cases depending on the number of ties. There are five
cases. (1) If there are no ties, then there are clearly P (4, 4) = 24 possible ways for the horses to finish.
(2) Assume that there are two horses that tie, but the others have distinct finishes. There are C(4, 2) = 6
ways to choose the horses to be tied; then there are P (3, 3) = 6 ways to determine the order of finish for the
three groups (the pair and the two single horses). Thus there are 6 ·6 = 36 ways for this to happen. (3) There
might be two groups of two horses that are tied. There are C(4, 2) = 6 ways to choose the winners (and the
other two horses are the losers). (4) There might be a group of three horses all tied. There are C(4, 3) = 4
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ways to choose which these horses will be, and then two ways for the race to end (the tied horses win or they
lose), so there are 4 · 2 = 8 possibilities. (5) There is only one way for all the horses to tie. Putting this all
together, the answer is 24 + 36 + 6 + 8 + 1 = 75.

46. a) The complicating factor here is the rule that the penalty kick round (or “group”) is over once one team has
clinched a victory. For example, if the first team to shoot has missed all of its first four shots and the other
team has made two of its first three shots, then the round is over after only seven kicks. There are 210 = 1024
possible scenarios without this rule (and without worrying yet about whether the score is tied at the end of
this round), but it seems rather tedious and dangerous (in the sense of your being likely to make a mistake
and leave something out) to try to analyze the more complicated situation by writing out all the possibilities
by hand. (This is not impossible, though, and the author has obtained the correct answer in this way.) Rather
than do this, one can write a computer program to simulate the situation and do the counting. The result is
that there are 672 possible scoring scenarios for a round of penalty kicks, including the possibility that the
score is still tied at the end of that round.

Next we need to count the number of ways for the score to end up tied at the end of the round. For this
to happen, both teams must score p points, where p is some integer between 0 and 5, inclusive. The scoring
scenario is determined by the positions of the kickers who did the scoring. There are C(5, p) ways to choose
these positions for each team, or C(5, p)2 ways in all. We need to sum this over the values of p from 0 to 5.
The sum is 252. So there are 252 ways for the score to end up tied. We already noted in the paragraph above
that there are 672 different scoring scenarios, so there are 672− 252 = 420 scenarios in which the score is not
tied. This answers the question for this part of the exercise.
b) This is easy after what we’ve found above. There are 252 ways for the score to be tied at the end of the
first group of penalty kicks, and there are 420 ways for the game to be settled in the second group. So there
are 252 · 420 = 105,840 ways for the game to end during the second round.
c) We have already seen that there are 420 ways for the game to end in the first round, and 105,840 more
ways for it to end in the second round. In order for it to go into a sudden death period, the first two rounds
must have ended tied, which can happen in 420 · 420 = 176,400 ways. Thereafter, the game can end after two
more kicks in 2 ways (either team can make their kick and have the other team miss theirs), after four more
kicks in 2 · 2 = 4 ways (the first pair of kicks must have the same result, either both made or both missed,
and then either team can win), after six more kicks in 22 · 2 = 8 ways (the first two pairs of kicks must have
the same results, and then either team can win), after eight more kicks in 16 ways, and after ten more kicks
in 32 ways. Thus there are 2+4+8+16+32 = 62 ways for the sudden death round to end within ten kicks.
This needs to be multiplied by the 176,400 ways we can reach sudden death, for a total of 10,936,800 scoring
scenarios. So the answer to this last question is 420 + 105840 + 10936800 = 11,043,060.

SECTION 6.4 Binomial Coefficients
2. a) When (x + y)5 = (x + y)(x + y)(x + y)(x + y)(x + y) is expanded, all products of a term in the first sum,

a term in the second sum, a term in the third sum, a term in the fourth sum, and a term in the fifth sum are
added. Terms of the form x5 , x4y , x3y2 , x2y3 , xy4 and y5 arise. To obtain a term of the form x5 , an x

must be chosen in each of the sums, and this can be done in only one way. Thus, the x5 term in the product
has a coefficient of 1. (We can think of this coefficient as

(5
5

)
.) To obtain a term of the form x4y , an x must

be chosen in four of the five sums (and consequently a y in the other sum). Hence, the number of such terms
is the number of 4-combinations of five objects, namely

(5
4

)
= 5. Similarly, the number of terms of the form

x3y2 is the number of ways to pick three of the five sums to obtain x’s (and consequently take a y from each
of the other two factors). This can be done in

(5
3

)
= 10 ways. By the same reasoning there are

(5
2

)
= 10 ways
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to obtain the x2y3 terms,
(5
1

)
= 5 ways to obtain the xy4 terms, and only one way (which we can think of as(5

0

)
) to obtain a y5 term. Consequently, the product is x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 .

b) This is explained in Example 2. The expansion is
(5
0

)
x5 +

(5
1

)
x4y +

(5
2

)
x3y2 +

(5
3

)
x2y3 +

(5
4

)
xy4 +

(5
5

)
y5 =

x5 +5x4y+10x3y2 +10x2y3 +5xy4 + y5 . Note that it does not matter whether we think of the bottom of the
binomial coefficient expression as corresponding to the exponent on x , as we did in part (a), or the exponent
on y , as we do here.

4.
(13

8

)
= 1287

6.
(11

7

)
14 = 330

8.
(17

9

)
3829 = 24310 · 6561 · 512 = 81,662,929,920

10. By the binomial theorem, the typical term in this expansion is
(100

j

)
x100−j(1/x)j , which can be rewritten as(100

j

)
x100−2j . As j runs from 0 to 100, the exponent runs from 100 down to −100 in decrements of 2. If we

let k denote the exponent, then solving k = 100 − 2j for j we obtain j = (100 − k)/2. Thus the values of k

for which xk appears in this expansion are −100, −98, . . . , −2, 0, 2, 4, . . . , 100, and for such values of k

the coefficient is
( 100
(100−k)/2

)
.

12. We just add adjacent numbers in this row to obtain the next row (starting and ending with 1, of course):

1 11 55 165 330 462 462 330 165 55 11 1

14. Using the factorial formulae for computing binomial coefficients, we see that
( n
k−1

)
= k

n−k+1

(n
k

)
. If k ≤ n/2,

then k
n−k+1 < 1, so the “less than” signs are correct. Similarly, if k > n/2, then k

n−k+1 > 1, so the “greater
than” signs are correct. The middle equality is Corollary 2 in Section 6.3, since #n/2$ + )n/2* = n . The
equalities at the ends are clear.

16. a) By Exercise 14, we know that
( n
"n/2#

)
is the largest of the n− 1 binomial coefficients

(n
1

)
through

( n
n−1

)
.

Therefore it is at least as large as their average, which is (2n − 2)/(n − 1). But since 2n ≤ 2n for n ≥ 2, it
follows that (2n − 2)/(n− 1) ≥ 2n/n , and the proof is complete.
b) This follows from part (a) by replacing n with 2n when n ≥ 2, and it is immediate when n = 1.

18. The numeral 11 in base b represents the number b + 1. Therefore the fourth power of this number is
b4 + 4b3 + 6b2 + 4b + 1, where the binomial coefficients can be read from Pascal’s triangle. As long as b ≥ 7,
these coefficients are single digit numbers in base b , so this is the meaning of the numeral (14641)b . In short,
the numeral formed by concatenating the symbols in the fourth row of Pascal’s triangle is the answer.

20. It is easy to see that both sides equal

(n− 1)!n!(n + 1)!
(k − 1)!k!(k + 1)!(n− k − 1)!(n− k)!(n− k + 1)!

.

22. a) Suppose that we have a set with n elements, and we wish to choose a subset A with k elements and
another, disjoint, subset with r − k elements. The left-hand side gives us the number of ways to do this,
namely the product of the number of ways to choose the r elements that are to go into one or the other of the
subsets and the number of ways to choose which of these elements are to go into the first of the subsets. The
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right-hand side gives us the number of ways to do this as well, namely the product of the number of ways to
choose the first subset and the number of ways to choose the second subset from the elements that remain.
b) On the one hand, (

n

r

)(
r

k

)
=

n!
r!(n− r)!

· r!
k!(r − k)!

=
n!

k!(n− r)!(r − k)!
,

and on the other hand
(
n

k

)(
n− k

r − k

)
=

n!
k!(n− k)!

· (n− k)!
(r − k)!(n− r)!

=
n!

k!(n− r)!(r − k)!
.

24. We know that (
p

k

)
=

p!
k!(p− k)!

.

Clearly p divides the numerator. On the other hand, p cannot divide the denominator, since the prime
factorizations of these factorials contains only numbers less than p . Therefore the factor p does not cancel
when this fraction is reduced to lowest terms (i.e., to a whole number), so p divides

(p
k

)
.

26. First, use Exercise 25 to rewrite the right-hand side of this identity as
( 2n
n+1

)
. We give a combinatorial proof,

showing that both sides count the number of ways to choose from collection of n men and n women, a subset
that has one more man than woman. For the left-hand side, we note that this subset must have k men and
k − 1 women for some k between 1 and n , inclusive. For the (modified) right-hand side, choose any set of
n+ 1 people from this collection of n men and n women; the desired subset is the set of men chosen and the
women left behind.

28. a) To choose 2 people from a set of n men and n women, we can either choose 2 men (
(n
2

)
ways to do so) or

2 women (
(n
2

)
ways to do so) or one of each sex (n ·n ways to do so). Therefore the right-hand side counts the

number of ways to do this (by the sum rule). The left-hand side counts the same thing, since we are simply
choosing 2 people from 2n people.
b) 2

(n
2

)
+ n2 = n(n− 1) + n2 = 2n2 − n = n(2n− 1) = 2n(2n− 1)/2 =

(2n
2

)

30. We follow the hint. The number of ways to choose this committee is the number of ways to choose the
chairman from among the n mathematicians (n ways) times the number of ways to choose the other n − 1
members of the committee from among the other 2n − 1 professors. This gives us n

(2n−1
n−1

)
, the expression

on the right-hand side. On the other hand, for each k from 1 to n , we can have our committee consist of k

mathematicians and n − k computer scientists. There are
(n
k

)
ways to choose the mathematicians, k ways

to choose the chairman from among these, and
( n
n−k

)
ways to choose the computer scientists. Since this last

quantity equals
(n
k

)
, we obtain the expression on the left-hand side of the identity.

32. For n = 0 we want

(x + y)0 =
0∑

j=0

(
0
j

)
x0−jyj =

(
0
0

)
x0y0 ,

which is true, since 1 = 1. Assume the inductive hypothesis. Then we have

(x + y)n+1 = (x + y)
n∑

j=0

(
n

j

)
xn−jyj

=
n∑

j=0

(
n

j

)
xn+1−jyj +

n∑

j=0

(
n

j

)
xn−jyj+1
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=
n∑

k=0

(
n

k

)
xn+1−kyk +

n+1∑

k=1

(
n

k − 1

)
xn+1−kyk

=
(
n

0

)
xn+1 +

( n∑

k=1

[
(
n

k

)
+

(
n

k − 1

)
]xn+1−kyk

)
+

(
n

n

)
yn+1

= xn+1 +
n∑

k=1

(
n + 1
k

)
xn+1−kyk + yn+1

=
n+1∑

k=0

(
n + 1
k

)
xn+1−kyk ,

as desired. The key point was the use of Pascal’s identity to simplify the expression in brackets in the fourth
line of this calculation.

34. By Exercise 33 there are
(n−k+k

k

)
=

(n
k

)
paths from (0, 0) to (n − k, k) and

(k+n−k
n−k

)
=

( n
n−k

)
paths from

(0, 0) to (k, n − k). By symmetry, these two quantities must be the same (flip the picture around the 45◦

line).

36. A path ending up at (n + 1 − k, k) must have made its last step either upward or to the right. If the last
step was made upward, then it came from (n + 1 − k, k − 1); if it was made to the right, then it came from
(n − k, k). The path cannot have passed through both of these points. Therefore the number of paths to
(n+1−k, k) is the sum of the number of paths to (n+1−k, k−1) and the number of paths to (n−k, k). By
Exercise 33 this tells us that

(n+1−k+k
k

)
=

(n+1−k+k−1
k−1

)
+

(n−k+k
k

)
, which simplifies to

(n+1
k

)
=

( n
k−1

)
+

(n
k

)
,

Pascal’s identity.

38. We follow the hint, first noting that we can start the summation with k = 1, since the term with k = 0
is 0. The left-hand side counts the number of ways to choose a subset as described in the hint by breaking it
down by the number of elements in the subset; note that there are k ways to choose each of the distinguished
elements if the subset has size k . For the right-hand side, first note that n(n + 1)2n−2 = n(n− 1 + 2)2n−2 =
n(n− 1)2n−2 + n2n−1 . The first term counts the number of ways to make this choice if the two distinguished
elements are different (choose them, then choose any subset of the remaining elements to be the rest of the
subset). The second term counts the number of ways to make this choice if the two distinguished elements
are the same (choose it, then choose any subset of the remaining elements to be the rest of the subset). Note
that this works even if n = 1.

SECTION 6.5 Generalized Permutations and Combinations
2. There are 5 choices each of 5 times, so the answer is 55 = 3125.

4. There are 6 choices each of 7 times, so the answer is 67 = 279,936.

6. By Theorem 2 the answer is C(3 + 5 − 1, 5) = C(7, 5) = C(7, 2) = 21.

8. By Theorem 2 the answer is C(21 + 12 − 1, 12) = C(32, 12) = 225,792,840.



168 Chapter 6 Counting

10. a) C(6 + 12 − 1, 12) = C(17, 12) = 6188 b) C(6 + 36 − 1, 36) = C(41, 36) = 749,398
c) If we first pick the two of each kind, then we have picked 2 ·6 = 12 croissants. This leaves one dozen left to
pick without restriction, so the answer is the same as in part (a), namely C(6+12−1, 12) = C(17, 12) = 6188.
d) We first compute the number of ways to violate the restriction, by choosing at least three broccoli croissants.
This can be done in C(6 + 21− 1, 21) = C(26, 21) = 65780 ways, since once we have picked the three broccoli
croissants there are 21 left to pick without restriction. Since there are C(6+24− 1, 24) = C(29, 24) = 118755
ways to pick 24 croissants without any restriction, there must be 118755 − 65780 = 52,975 ways to choose
two dozen croissants with no more than two broccoli.
e) Eight croissants are specified, so this problem is the same as choosing 24 − 8 = 16 croissants without
restriction, which can be done in C(6 + 16 − 1, 16) = C(21, 16) = 20,349 ways.
f) First let us include all the lower bound restrictions. If we choose the required 9 croissants, then there
are 24 − 9 = 15 left to choose, and if there were no restriction on the broccoli croissants then there would
be C(6 + 15 − 1, 15) = C(20, 15) = 15504 ways to make the selections. If in addition we were to violate
the broccoli restriction by choosing at least four broccoli croissants, there would be C(6 + 11 − 1, 11) =
C(16, 11) = 4368 choices. Therefore the number of ways to make the selection without violating the restriction
is 15504 − 4368 − 11,136.

12. There are 5 things to choose from, repetitions allowed, and we want to choose 20 things, order not important.
Therefore by Theorem 2 the answer is C(5 + 20 − 1, 20) = C(24, 20) = C(24, 4) = 10,626.

14. By Theorem 2 the answer is C(4 + 17 − 1, 17) = C(20, 17) = C(20, 3) = 1140.

16. a) We require each xi ≥ 2. This uses up 12 of the 29 total required, so the problem is the same as finding
the number of solutions to x′

1 + x′
2 + x′

3 + x′
4 + x′

5 + x′
6 = 17 with each x′

i a nonnegative integer. The number
of solutions is therefore C(6 + 17 − 1, 17) = C(22, 17) = 26,334.
b) The restrictions use up 22 of the total, leaving a free total of 7. Therefore the answer is C(6 + 7− 1, 7) =
C(12, 7) = 792.
c) The number of solutions without restriction is C(6 + 29 − 1, 29) = C(34, 29) = 278256. The number of
solution violating the restriction by having x1 ≥ 6 is C(6 + 23 − 1, 23) = C(28, 23) = 98280. Therefore the
answer is 278256 − 98280 = 179,976.
d) The number of solutions with x2 ≥ 9 (as required) but without the restriction on x1 is C(6 + 20 −
1, 20) = C(25, 20) = 53130. The number of solution violating the additional restriction by having x1 ≥ 8 is
C(6 + 12 − 1, 12) = C(17, 12) = 6188. Therefore the answer is 53130 − 6188 = 46,942.

18. It follows directly from Theorem 3 that the answer is

20!
2!4!3!1!2!3!2!3!

≈ 5.9 × 1013 .

20. We introduce the nonnegative slack variable x4 , and our problem becomes the same as the problem of counting
the number of nonnegative integer solutions to x1 + x2 + x3 + x4 = 11. By Theorem 2 the answer is
C(4 + 11 − 1, 11) = C(14, 11) = C(14, 3) = 364.

22. If we think of the balls as doing the choosing, then this is asking for the number of ways to choose 12 bins
from the six given bins, with repetition allowed. (The number of times each bin is chosen is the number of
balls in that bin.) By Theorem 2 with n = 6 and r = 12, this choice can be made in C(6 + 12 − 1, 12) =
C(17, 12) = 6188 ways.
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24. We assume that this problem leaves us free to pick which boxes get which numbers of balls. There are several
ways to count this. Here is one. Line up the 15 objects in a row (15! ways to do that), and line up the five
boxes in a row (5! ways to do that). Now put the first object into the first box, the next two into the second
box, the next three into the third box, and so on. This overcounts by a factor of 1! · 2! · 3! · 4! · 5!, since there
are that many ways to swap objects in the permutation without affecting the result. Therefore the answer is
15! · 5!/(1! · 2! · 3! · 4! · 5!) = 4,540,536,000.

26. We can model this problem by letting xi be the ith digit of the number for i = 1, 2, 3, 4, 5, 6, and asking
for the number of solutions to the equation x1 + x2 + x3 + x4 + x5 + x6 = 13, where each xi is between 0
and 8, inclusive, except that one of them equals 9. First, there are 6 ways to decide which of the digits is 9.
Without loss of generality assume that x6 = 9. Then the number of ways to choose the remaining digits is
the number of nonnegative integer solutions to x1 + x2 + x3 + x4 + x5 = 4 (note that the restriction that
each xi ≤ 8 was moot, since the sum was only 4). By Theorem 2 there are C(5 + 4 − 1, 4) = C(8, 4) = 70
solutions. Therefore the answer is 6 · 70 = 420.

28. (Note that the roles of the letters n and r here are reversed from the usual roles, as, for example, in Theorem 2.)
We can choose the required objects first, and there are q1+q2+ · · ·+qr of these. Then n−(q1+q2+ · · ·+qr) =
n − q1 − q2 − · · · − qr objects remain to be chosen. There are still r types. Therefore by Theorem 2,
the number of ways to make this choice is C(r + (n − q1 − q2 − · · · − qr) − 1, (n − q1 − q2 − · · · − qr)) =
C(n + r − q1 − q2 − · · ·− qr − 1, n− q1 − q2 − · · ·− qr).

30. By Theorem 3 the answer is 11!/(4!4!2!) = 34,650.

32. We can treat the 3 consecutive A’s as one letter. Thus we have 6 letters, of which 2 are the same (the two
R’s), so by Theorem 3 the answer is 6!/2! = 360.

34. We need to calculate separately, using Theorem 3, the number of strings of length 5, 6, and 7. There are
7!/(3!3!1!) = 140 strings of length 7. For strings of length 6, we can omit the R and form 6!/(3!3!) = 20
string; omit an E and form 6!/(3!2!1!) = 60 strings, or omit an S and also form 60 strings. This gives a total
of 140 strings of length 6. For strings of length 5, we can omit two E’s or two S’s, each giving 5!/(3!1!1!) = 20
strings; we can omit one E and one S (5!/(2!2!1!) = 30 strings); or we can omit the R and either an E or an S
(5!/(3!2!) = 10 strings each). This gives a total of 90 strings of length 5, for a grand total of 370 strings of
length 5 or greater.

36. We simply need to choose the 6 positions, out of the 14 available, to make 1’s. There are C(14, 6) = 3003
ways to do so.

38. We assume that the forty issues are distinguishable.
a) Theorem 4 says that the answer is 40!/10!4 ≈ 4.7 × 1021 .
b) Each distribution into identical boxes gives rise to 4! = 24 distributions into labeled boxes, since once we
have made the distribution into unlabeled boxes we can arbitrarily label the boxes. Therefore the answer is
the same as the answer in part (a) divided by 24, namely (40!/10!4)/4! ≈ 2.0 × 1020 .

40. We can describe any such travel in a unique way by a sequence of 4 x’s , 3 y’s , 5 z’s , and 4 w’s . By
Theorem 3, there are

16!
4!3!5!4!

= 50,450,400

such sequences.
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42. Theorem 4 says that the answer is 52!/13!4 ≈ 5.4 × 1028 , since each player gets 13 cards.

44. a) All that matters is the number of books on each shelf, so the answer is the number of solutions to
x1 + x2 + x3 + x4 = 12, where xi is being viewed as the number of books on shelf i . The answer is therefore
C(4 + 12 − 1, 12) = C(15, 12) = 455.
b) No generality is lost if we number the books b1 , b2 , . . . , b12 and think of placing book b1 , then placing
b2 , and so on. There are clearly 4 ways to place b1 , since we can put it as the first book (for now) on any of
the shelves. After b1 is placed, there are 5 ways to place b2 , since it can go to the right of b1 or it can be the
first book on any of the shelves. We continue in this way: there are 6 ways to place b3 (to the right of b1 ,
to the right of b2 , or as the first book on any of the shelves), 7 ways to place b4 , . . . , 15 ways to place b12 .
Therefore the answer is the product of these numbers 4 · 5 · · · 15 = 217,945,728,000.

46. We follow the hint. There are 5 bars (chosen books), and therefore there are 6 places where the 7 stars
(nonchosen books) can fit (before the first bar, between the first and second bars, . . . , after the fifth bar).
Each of the second through fifth of these slots must have at least one star in it, so that adjacent books are
not chosen. Once we have placed these 4 stars, there are 3 stars left to be placed in 6 slots. The number of
ways to do this is therefore C(6 + 3 − 1, 3) = C(8, 3) = 56.

48. We can think of the n distinguishable objects to be distributed into boxes as numbered from 1 to n . Since
such a distribution is completely determined by assigning a box number (from 1 to k ) to each object, we can
think of a distribution simply as a sequence of box numbers a1 , a2 , . . . , an , where ai is the box into which
object i goes. Furthermore, since we want ni objects to go into box i , this sequence must contain ni copies
of the number i (for each i from 1 to k ). But this is precisely a permutation of n objects (namely, numbers)
with ni indistinguishable objects of type i (namely, ni copies of the number i). Thus we have established the
desired one-to-one correspondence. Since Theorem 3 tells us that there are n!/(n1!n2! · · ·nk!) permutations,
there must also be this many ways to do the distribution into boxes, and the proof of Theorem 4 is complete.

50. This is actually a problem about partitions of sets. Let us call the set of 5 objects {a, b, c, d, e} . We want
to partition this set into three pairwise disjoint subsets (some possibly empty). We count in a fairly ad hoc
way. First, we could put all five objects into one subset (i.e., all five objects go into one box, with the other
two boxes empty). Second, we could put four of the objects into one subset and one into another, such as
{a, b, c, d} together with {e} . There are 5 ways to do this, since each of the five objects can be the singleton.
Third, we could put three of the objects into one set (box) and two into another; there are C(5, 2) = 10 ways
to do this, since there are that many ways to choose which objects are to be the doubleton. Similarly, there
are 10 ways to distribute the elements so that three go into one set and one each into the other two sets (for
example, {a, b, c} , {d} , and {e}). Finally, we could put two items into one set, two into another, and one into
the third (for example, {a, b} , {c, d} , and {e}). Here we need to choose the singleton (5 ways), and then we
need to choose one of the 3 ways to separate the remaining four elements into pairs; this gives a total of 15
partitions. In all we have 41 different partitions.

This can also be solved by using the formulae given in the text in a discussion of Stirling numbers of the
second kind (this follows Example 10):

S(5, 1) =
1
1!

((
1
0

)
15

)
=

1
1!

(1) = 1

S(5, 2) =
1
2!

((
2
0

)
25 −

(
2
1

)
15

)
=

1
2!

(32 − 2) = 15

S(5, 3) =
1
3!

((
3
0

)
35 −

(
3
1

)
25 +

(
3
2

)
15

)
=

1
3!

(243 − 96 + 3) = 25
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3∑

j=1

S(5, j) = 1 + 15 + 25 = 41

52. This is similar to Exercise 50, with 3 replaced by 4. We compute this using the formulae:

S(5, 1) =
1
1!

((
1
0

)
15

)
=

1
1!

(1) = 1

S(5, 2) =
1
2!

((
2
0

)
25 −

(
2
1

)
15

)
=

1
2!

(32 − 2) = 15

S(5, 3) =
1
3!

((
3
0

)
35 −

(
3
1

)
25 +

(
3
2

)
15

)
=

1
3!

(243 − 96 + 3) = 25

S(5, 4) =
1
4!

((
4
0

)
45 −

(
4
1

)
35 +

(
4
2

)
25 −

(
4
3

)
15

)
=

1
4!

(1024 − 972 + 192 − 4) = 10

4∑

j=1

S(5, j) = 1 + 15 + 25 + 10 = 51

54. We are asked for the partitions of 5 into at most 3 parts; notice that we are not required to use all three boxes.
We can easily list these partitions explicitly: 5 = 5, 5 = 4 + 1, 5 = 3 + 2, 5 = 3 + 1 + 1, and 5 = 2 + 2 + 1.
Therefore the answer is 5.

56. This is similar to Exercise 55. Since each box has to contain at least one object, we might as well put one object
into each box to begin with. This leaves us with just three more objects, and there are only three choices: we
can put them all into the same box (so that the partition we end up with is 8 = 4 + 1 + 1 + 1 + 1), or we can
put them into three different boxes (so that the partition we end up with is 8 = 2 + 2 + 2 + 1 + 1), or we can
put two into one box and the last into another (so that the partition we end up with is 8 = 3 + 2 + 1 + 1 + 1).
So the answer is 3.

58. a) This is a straightforward application of the product rule: There are 7 choices for the first ball, 6 choices
for the second ball, and so on, for an answer of 7 · 6 · 5 · 4 · 3 = 2520.
b) Since each ball must be in a separate box and the boxes are unlabeled, there is only one way to do this.
c) This is just a matter of choosing which five boxes to put balls into, so the answer is C(7, 5) = 21.
d) As noted in part (b), there is only one way to do this.

60. There are 31 other teams to play, and we can denote these with the symbols x1 , x2 , . . . , x31 . We are asked
for a list of 4 · 4 + 11 · 3 + 16 · 2 = 81 of these symbols that contains exactly 4 copies of each of x1 through
x4 , exactly 3 copies of each of x5 through x15 , and exactly 2 copies of each of x16 through x31 . Theorem 3
tells us that the number of possible lists is

81!
(4!)4 · (3!)11 · (2!)16

≈ 7.35 × 10101 .

(The arithmetic was done with Maple.)

62. Each term must be of the form Cxn1
1 xn2

2 · · ·xnm
m , where the ni’s are nonnegative integers whose sum is n . The

number of ways to specify a term, then, is the number of nonnegative integer solutions to n1+n2+· · ·+nm = n ,
which by Theorem 2 is C(m+ n− 1, n). Note that the coefficients C for these terms can be computed using
Theorem 3—see Exercise 63.
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64. From Exercise 62, we know that there are C(3 + 4 − 1, 4) = C(6, 4) = 15 terms, and the coefficients come
from Exercise 63. The answer is x4 + y4 + z4 + 4x3y + 4xy3 + 4x3z + 4xz3 + 4y3z + 4yz3 + 6x2y2 + 6x2z2 +
6y2z2 + 12x2yz + 12xy2z + 12xyz2 .

66. By Exercise 62, the answer is C(3 + 100 − 1, 100) = C(102, 100) = C(102, 2) = 5151.

SECTION 6.6 Generating Permutations and Combinations
2. 156423, 165432, 231456, 231465, 234561, 314562, 432561, 435612, 541236, 543216, 654312, 654321

4. Our list will have 33 · 22 = 108 items in it. Here it is in lexicographic order: 000aa, 000ab, 000ba, 000bb,
001aa, 001ab, 001ba, 001bb, 002aa, 002ab, 002ba, 002bb, 010aa, 010ab, 010ba, 010bb, 011aa, 011ab, 011ba,
011bb, 012aa, 012ab, 012ba, 012bb, 020aa, 020ab, 020ba, 020bb, 021aa, 021ab, 021ba, 021bb, 022aa, 022ab,
022ba, 022bb, 100aa, 100ab, 100ba, 100bb, 101aa, 101ab, 101ba, 101bb, 102aa, 102ab, 102ba, 102bb, 110aa,
110ab, 110ba, 110bb, 111aa, 111ab, 111ba, 111bb, 112aa, 112ab, 112ba, 112bb, 120aa, 120ab, 120ba, 120bb,
121aa, 121ab, 121ba, 121bb, 122aa, 122ab, 122ba, 122bb, 200aa, 200ab, 200ba, 200bb, 201aa, 201ab, 201ba,
201bb, 202aa, 202ab, 202ba, 202bb, 210aa, 210ab, 210ba, 210bb, 211aa, 211ab, 211ba, 211bb, 212aa, 212ab,
212ba, 212bb, 220aa, 220ab, 220ba, 220bb, 221aa, 221ab, 221ba, 221bb, 222aa, 222ab, 222ba, 222bb.

6. These can be done using Algorithm 1 or Example 2. This will be explained in detail for part (a); the others
are similar. In the last four parts of this exercise, the next permutation exchanges only the last two elements.
a) The last pair of integers aj and aj+1 where aj < aj+1 is a2 = 3 and a3 = 4. The least integer to the
right of 3 that is greater than 3 is 4. Hence 4 is placed in the second position. The integers 2 and 3 are
then placed in order in the last two positions, giving the permutation 1423.
b) 51234 c) 13254 d) 612354 e) 1623574 f) 23587461

8. The first subset corresponds to the bit string 0000, namely the empty set. The next subset corresponds to
the bit string 0001, namely the set {4} . The next bit string is 0010, corresponding to the set {3} , and then
0011, which corresponds to the set {3, 4} . We continue in this manner, giving the remaining sets: {2} , {2, 4} ,
{2, 3} , {2, 3, 4} , {1} , {1, 4} , {1, 3} , {1, 3, 4} , {1, 2} , {1, 2, 4} , {1, 2, 3} , {1, 2, 3, 4} .

10. Since the new permutation agrees with the old one in positions 1 to j − 1, and since the new permutation
has ak in position j , whereas the old one had aj , with ak > aj , the new permutation succeeds the old one in
lexicographic order. Furthermore the new permutation is the first one (in lexicographic order) with a1 , a2 ,
. . . , aj−1 , ak in positions 1 to j , and the old permutation was the last one with a1 , a2 , . . . , aj−1 , aj in
those positions. Since ak was picked to be the smallest number greater than aj among aj+1 , aj+2 , . . . , an ,
there can be no permutation between these two.

12. One algorithm would combine Algorithm 3 and Algorithm 1. Using Algorithm 3, we generate all the r-
combinations of the set with n elements. At each stage, after we have found each r-combination, we use
Algorithm 1, with n = r (and a different collection to be permuted than {1, 2, . . . , n}), to generate all the
permutations of the elements in this combination. See the solution to Exercise 13 for an example.

14. a) We find that a1 = 1, a2 = 1, a3 = 2, a4 = 2, and a5 = 3. Therefore the number is 1 · 1! + 1 · 2! + 2 · 3! +
2 · 4! + 3 · 5! = 1 + 2 + 12 + 48 + 360 = 423.
b) Each ak = 0, so the number is 0.
c) We find that a1 = 1, a2 = 2, a3 = 3, a4 = 4, and a5 = 5. Therefore the number is 1 · 1! + 2 · 2! + 3 · 3! +
4 · 4! + 5 · 5! = 1 + 4 + 18 + 96 + 600 = 719 = 6! − 1, as expected, since this is the last permutation.
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16. a) We find the Cantor expansion of 3 to be 1 · 1! + 1 · 2!. Therefore we know that a4 = 0, a3 = 0, a2 = 1,
and a1 = 1. Following the algorithm given in the solution to Exercise 15, we put 5 in position 5− 0 = 5, put
4 in position 4 − 0 = 4, put 3 in position 3 − 1 = 2, and put 2 in the position that is 1 from the rightmost
available position, namely position 1. Therefore the answer is 23145.
b) We find that 89 = 1 · 1! + 2 · 2! + 2 · 3! + 3 · 4!. Therefore we insert 5, 4, 3, and 2, in order, skipping 3,
2, 2, and 1 positions from the right among the available positions, obtaining 35421.
c) We find that 111 = 1 · 1! + 1 · 2! + 2 · 3! + 4 · 4!. Therefore we insert 5, 4, 3, and 2, in order, skipping 4,
2, 1, and 1 positions from the right among the available positions, obtaining 52431.

SUPPLEMENTARY EXERCISES FOR CHAPTER 6
2. a) There are no ways to do this, since there are not enough items. b) 610 = 60,466,176

c) There are no ways to do this, since there are not enough items.
d) C(6 + 10 − 1, 10) = C(15, 10) = C(15, 5) = 3003

4. There are 27 bit strings of length 10 that start 000, since each of the last 7 bits can be chosen in either of
two ways. Similarly, there are 26 bit strings of length 10 that end 1111, and there are 23 bit strings of length
10 that both start 000 and end 1111 (since only the 3 middle bits can be freely chosen). Therefore by the
inclusion–exclusion principle, the answer is 27 + 26 − 23 = 184.

6. 9 · 10 · 10 · 10 · 10 = 90,000

8. a) All the integers from 100 to 999 have three decimal digits, and there are 999 − 100 + 1 = 900 of these.
b) In addition to the 900 three-digit numbers, there are 9 one-digit positive integers, for a total of 909.
c) There is 1 one-digit number with a 9. Among the two-digit numbers, there are the 10 numbers from 90
to 99, together with the 8 numbers 19, 29, . . . , 89, for a total of 18. Among the three-digit numbers, there
are the 100 from 900 to 999; and there are, for each century from the 100’s to the 800’s, again 1 + 18 = 19
numbers with at least one 9; this gives a total of 100+8·19 = 252. Thus our final answer is 1+18+252 = 271.
Alternately, we can compute this as 103 − 93 = 271, since we want to subtract from the number of three-digit
nonnegative numbers (with leading 0’s allowed) the number of those that use only the nine digits 0 through 8.
d) Since we can use only even digits, there are 53 = 125 ways to specify a three-digit number, allowing leading
0’s. Since, however, the number 0 = 000 is not in our set, we need to subtract 1, obtaining the answer 124.
e) The numbers in question are either of the form d55 or 55d , with d ,= 5, or 555. Since d can be any of
nine digits, there are 9 + 9 + 1 = 19 such numbers.
f) All 9 one-digit numbers are palindromes. The 9 two-digit numbers 11, 22, . . . , 99 are palindromes. For
three-digit numbers, the first digit (which must equal the third digit) can be any of the 9 nonzero digits,
and the second digit can be any of the 10 digits, giving 9 · 10 = 90 possibilities. Therefore the answer is
9 + 9 + 90 = 108.

10. Using the generalized pigeonhole principle, we see that we need 5 × 12 + 1 = 61 people.

12. There are 7 × 12 = 84 day-month combinations. Therefore we need 85 people to ensure that two of them
were born on the same day of the week and in the same month.

14. We need at least 551 cards to ensure that at least two are identical. Since the cards come in packages of 20,
we need )551/20* = 28 packages.
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16. Partition the set of numbers from 1 to 2n into the n pigeonholes {1, 2} , {3, 4} , . . . , {2n − 1, 2n} . If we
have n+ 1 numbers from this set (the pigeons), then two of them must be in the same hole. This means that
among our collection are two consecutive numbers. Clearly consecutive numbers are relatively prime (since
every common divisor must divide their difference, 1).

18. Divide the interior of the square, with lines joining the midpoints of opposite sides, into four 1 × 1 squares.
By the pigeonhole principle, at least two of the five points must be in the same small square. The furthest
apart two points in a square could be is the length of the diagonal, which is

√
2 for a square 1 unit on a side.

20. If the worm never gets sent to the same computer twice, then it will infect 100 computers on the first round
of forwarding, 1002 = 10,000 other computers on the second round of forwarding, and so on. Therefore the
maximum number of different computers this one computer can infect is 100 + 1002 + 1003 + 1004 + 1005 =
10,101,010,100. This figure of ten billion is probably comparable to the total number of computers in the
world.

22. a) We want to solve n(n− 1) = 110, or n2 − n− 110 = 0. Simple algebra gives n = 11 (we ignore n = −10,
since we need a positive integer for our answer).
b) We recall that 7! = 5040, so the answer is 7.
c) We need to solve the equation n(n − 1)(n − 2)(n − 3) = 12n(n − 1). Since we have n ≥ 4 in order for
P (n, 4) to be defined, this equation reduces to (n− 2)(n− 3) = 12, or n2 − 5n− 6 = 0. Simple algebra gives
n = 6 (we ignore the solution n = −1 since n needs to be a positive integer).

24. An algebraic proof is straightforward. We will give a combinatorial proof of the equivalent identity P (n +
1, r)(n + 1 − r) = (n + 1)P (n, r) (and in fact both of these equal P (n + 1, r + 1)). Consider the problem of
writing down a permutation of r + 1 objects from a collection of n + 1 objects. We can first write down a
permutation of r of these objects (P (n + 1, r) ways to do so), and then write down one more object (and
there are n + 1 − r objects left to choose from), thereby obtaining the left-hand side; or we can first choose
an object to write down first (n + 1 to choose from), and then write down a permutation of length r using
the n remaining objects (P (n, r) ways to do so), thereby obtaining the right-hand side.

26. First note that Corollary 2 of Section 6.4 is equivalent to the assertion that the sum of the numbers C(n, k) for
even k is equal to the sum of the numbers C(n, k) for odd k . Since C(n, k) counts the number of subsets of
size k of a set with n elements, we need to show that a set has as many even-sized subsets as it has odd-sized
subsets. Define a function f from the set of all subsets of A to itself (where A is a set with n elements, one
of which is a), by setting f(B) = B ∪ {a} if a /∈ B , and f(B) = B − {a} if a ∈ B . It is clear that f takes
even-sized subsets to odd-sized subsets and vice versa, and that f is one-to-one and onto (indeed, f−1 = f ).
Therefore f restricted to the set of subsets of odd size gives a one-to-one correspondence between that set
and the set of subsets of even size.

28. The base case is n = 2, in which case the identity simply states that 1 = 1. Assume the inductive hypothesis,
that

∑n
j=2 C(j, 2) = C(n + 1, 3). Then

n+1∑

j=2

C(j, 2) =
( n∑

j=2

C(j, 2)
)

+ C(n + 1, 2)

= C(n + 1, 3) + C(n + 1, 2) = C((n + 1) + 1, 3) ,
as desired. The last equality made use of Pascal’s identity.

30. Each pair of values of i and j with 1 ≤ i < j ≤ n contributes a 1 to this sum, so the sum is just the number of
such pairs. But this is clearly the number of ways to choose two integers from {1, 2, . . . , n} , which is C(n, 2),
also known as

(n
2

)
.
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32. a) For a fixed k , a triple is totally determined by picking i and j ; since each can be picked in k ways (each
can be any number from 0 to k−1, inclusive), there are k2 ways to choose the triple. Adding over all possible
values of k gives the indicated sum.
b) A triple of this sort is totally determined by knowing the set of numbers {i, j, k} , since the order is fixed.
Therefore the number of triples of each kind is just the number of sets of 3 elements chosen from the set
{0, 1, 2, . . . , n} , and that is clearly C(n + 1, 3).
c) In order for i to equal j (with both less than k ), we need to pick two elements from {0, 1, 2, . . . , n} , using
the larger one for k and the smaller one for both i and j . Therefore there are as many such choices as there
are 2-element subsets of this set, namely C(n + 1, 2).
d) This part is its own proof. The last equality follows from elementary algebra.

34. a) If we 2-color the 2d− 1 elements of S , then there must be at least d elements of one color (if there were
d− 1 or fewer elements of both colors, then only 2d− 2 elements would be colored); this is just an application
of the generalized pigeonhole principle. Thus there is a d -element subset that does not contain both colors,
in violation of the condition for being 2-colorable.
b) We must show that every collection of fewer than three sets each containing two elements is 2-colorable,
and that there is a collection of three sets each containing two elements that is not 2-colorable. The second
statement follows from part (a), with d = 2 (the three sets are {1, 2} , {1, 3} , and {2, 3}). On the other hand,
if we have two (or fewer) sets each with two elements, then we can color the two elements of the first set with
different colors, and we cannot be prevented from properly coloring the second set, since it must contain an
element not in the first set.
c) First we show that the given collection is not 2-colorable. Without loss of generality, assume that 1 is red.
If 2 is red, then 6 must be blue (second set). Thus either 4 or 5 must be red (seventh set), which means that
3 must be blue (first or fourth set). This would force 7 to be red (sixth set), which would force both 4 and 5
to be blue (third and fifth sets), a contradiction. Thus 2 is blue. If 3 is red, then we can conclude that 5 is
blue, 7 is red, 6 is blue, and 4 is blue, making the last set improperly colored. Thus 3 is blue. This implies
that 4 is red, hence 7 is blue, hence 5 and 6 are red, another contradiction. So the given collection cannot be
2-colored. Next we must show that all collections of six sets with three elements each are 2-colorable. Since
having more elements in S at our disposable only makes it easier to 2-color the collection, we can assume that
S has only five elements; let S = {a, b, c, d, e} . Since there are 18 occurrences of elements in the collection,
some element, say a , must occur at least four times (since 3 · 5 < 18). If a occurs in six of the sets, then
we can color a red and the rest of the elements blue. If a occurs in five of the sets, suppose without loss of
generality that b and c occur in the sixth set. Then we can color a and b red and the remaining elements
blue. Finally, if a occurs in only four of the sets, then that leaves only four elements for the last two sets,
and therefore a pair of elements must be shared by them, say b and c . Again coloring a and b red and the
remaining elements blue gives the desired coloring.

36. We might as well assume that the first person sits in the northernmost seat. Then there are P (7, 7) ways to
seat the remaining people, since they form a permutation reading clockwise from the first person. Therefore
the answer is 7! = 5040.

38. We need to know the number of solutions to d + m + g = 12, where d , m , and g are integers greater than
or equal to 3. This is equivalent to the number of nonnegative integer solutions to d′ + m′ + g′ = 3, where
d′ = d−3, m′ = m−3, and g′ = g−3. By Theorem 2 of Section 6.5, the answer is C(3+3−1, 3) = C(5, 3) = 10.

40. a) By Theorem 3 of Section 6.5, the answer is 10!/(3!2!2!) = 151,200.
b) If we fix the start and the end, then the question concerns only 8 letters, and the answer is 8!/(2!2!) =
10,080.
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c) If we think of the three P ’s as one letter, then the answer is seen to be 8!/(2!2!) = 10,080.

42. There are 26 choices for the third letter. If the digit part of the plate consists of the digits 1, 2, and d ,
where d is different from 1 or 2, then there are 8 choices for d and 3! = 6 choices for a permutation of these
digits. If d = 1 or 2, then there are 2 choices for d and 3 choices for a permutation. Therefore the answer
is 26(8 · 6 + 2 · 3) = 1404.

44. Let us look at the girls first. There are P (8, 8) = 8! = 40320 ways to order them relative to each other. This
much work produces 9 gaps between girls (including the ends), in each of which at most one boy may sit. We
need to choose, in order without repetition, 6 of these gaps, and this can be done in P (9, 6) = 60480 ways.
Therefore the answer is, by the product rule, 40320 · 60480 = 2,438,553,600.

46. We are given no restrictions, so any number of the boxes can be occupied once we have distributed the objects.
a) This is a straightforward application of the product rule; there are 65 = 7776 ways to do this, because
there are 6 choices for each of the 5 objects.
b) This is similar to Exercise 50 in Section 6.5. We compute this using the formulae:

S(5, 1) =
1
1!

((
1
0

)
15

)
=

1
1!

(1) = 1

S(5, 2) =
1
2!

((
2
0

)
25 −

(
2
1

)
15

)
=

1
2!

(32 − 2) = 15

S(5, 3) =
1
3!

((
3
0

)
35 −

(
3
1

)
25 +

(
3
2

)
15

)
=

1
3!

(243 − 96 + 3) = 25

S(5, 4) =
1
4!

((
4
0

)
45 −

(
4
1

)
35 +

(
4
2

)
25 −

(
4
3

)
15

)
=

1
4!

(1024 − 972 + 192 − 4) = 10

S(5, 5) =
1
5!

((
5
0

)
55 −

(
5
1

)
45 +

(
5
2

)
35 −

(
5
3

)
25 +

(
5
4

)
15

)
=

1
5!

(3125 − 5120 + 2430 − 320 + 5) = 1

5∑

j=1

S(5, j) = 1 + 15 + 25 + 10 + 1 = 52

c) This is asking for the number of solutions to x1 + x2 + x3 + x4 + x5 + x6 = 5 in nonnegative integers. By
Theorem 2 (see also Example 5) in Section 6.5, the answer is C(6 + 5 − 1, 5) = C(10, 5) = 252.
d) This is asking for the number of partitions of 5 (into at most six parts, but that is moot). We list them:
5 = 5, 5 = 4 + 1, 5 = 3 + 2, 5 = 3 + 1 + 1, 5 = 2 + 2 + 1, 5 = 2 + 1 + 1 + 1, 5 = 1 + 1 + 1 + 1 + 1. Therefore
the answer is 7.

48. One way to look at this involves what is called the cycle structure of a permutation. Think of the people as
the numbers from 1 to n . Given a permutation π of {1, 2, . . . , n} , we can write down the cycles the result
from applying this permutation. Each cycle can be viewed as a list of the people sitting at a circular table, in
clockwise order. The first cycle contains 1, π(1), π(π(1)), . . . , until we eventually return to 1 (which must
happen because permutation are one-to-one functions). If k is the first number not in the first cycle, then the
second cycle consists of k , π(k), π(π(k)), . . . , and so on. For example, the permutation that sends x to x+3
on a 12-hour clock has cycle structure (1, 4, 7, 10), (2, 5, 8, 11), (3, 6, 9, 12). Thus each of the n! permutations
gives rise to a seating of n people around j circular tables for some j between 1 and n inclusive. Conversely,
such a seating gives us a permutation—π(x) is the number clockwise from x at whatever table x is at (which
could be x itself). The identity follows from this discussion.
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50. We can give a nice combinatorial proof here. If we wish to have people numbered 1 through n + 1 sit at
k circular tables, there are two choices. We could have n + 1 sit at a table by himself and then place the
remaining n people at k−1 circular tables (the first term on the right-hand side of this identity), or we could
seat the first n people at the k tables and then have n+ 1 sit immediately to the right of one of those people
(there being n choices for this last step, giving us the second term on the right).

52. Except for the last three symbols, for which we have no choice, we need a permutation of 2 A’s, 2 C’s, 2 U’s,
and 2 G’s. By Theorem 3 in Section 6.5, the answer is 8!/(2!)4 = 2520.

54. From the first piece of information, we know that the chain ends AC and preceding that are the chains UG
and ACG in some order. So there are only two choices: UGACGAC or ACGUGAC. It is easily seen that
breaking the first of these after each U or C produces the fragments stated in the second half of the first
sentence, whereas breaking the second choice similarly produces something else (AC, GU, GAC). Therefore
the original chain was UGACGAC.

56. Assume without loss of generality that we wish to form r-combinations from the set {1, 2, . . . , n} . We modify
Algorithm 3 in Section 6.6 for generating the next r-combination in lexicographic order, allowing for repetition.
Then we generate all such combinations by starting with 11 . . . 1 and calling this modified algorithm C(n +
r − 1, r) − 1 times (this will give us nn . . . n as the last one).

procedure next r-combination(a1, a2, . . . , ar : integers)
{We assume that 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ n , with a1 ,= n }
i := r
while ai = n

i := i− 1
ai := ai + 1
for j := i + 1 to r

aj := ai

58. One needs to play around with this enough to eventually discover a situation satisfying the conditions. Here
is a way to do it. Suppose the group consists of three men and three women, and suppose that people of the
same sex are always enemies and people of the opposite sex are always friends. Then clearly there can be
no set of four mutual enemies, because any set of four people must include at least one man and one woman
(since there are only three of each sex in the whole group). Also there can be no set of three mutual friends,
because any set of three people must include at least two people of the same sex (since there are only two
sexes).


