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CHAPTER 10
Graphs

SECTION 10.1 Graphs and Graph Models
2. a) A simple graph would be the model here, since there are no parallel edges or loops, and the edges are

undirected.
b) A multigraph would, in theory, be needed here, since there may be more than one interstate highway
between the same pair of cities.
c) A pseudograph is needed here, to allow for loops.

4. This is a multigraph; the edges are undirected, and there are no loops, but there are parallel edges.

6. This is a multigraph; the edges are undirected, and there are no loops, but there are parallel edges.

8. This is a directed multigraph; the edges are directed, and there are parallel edges.

10. The graph in Exercise 3 is simple. The multigraph in Exercise 4 can be made simple by removing one of the
edges between a and b , and two of the edges between b and d . The pseudograph in Exercise 5 can be made
simple by removing the three loops and one edge in each of the three pairs of parallel edges. The multigraph
in Exercise 6 can be made simple by removing one of the edges between a and c , and one of the edges between
b and d . The other three are not undirected graphs. (Of course removing any supersets of the answers given
here are equally valid answers; in particular, we could remove all the edges in each case.)

12. If uR v , then there is an edge joining vertices u and v , and since the graph is undirected, this is also an edge
joining vertices v and u . This means that v Ru . Thus the relation is symmetric. The relation is reflexive
because the loops guarantee that uRu for each vertex u .

14. Since there are edges from Hawk to Crow, Owl, and Raccoon, the graph is telling us that the hawk competes
with these three animals.

16. Each person is represented by a vertex, with an edge between two vertices if and only if the people are
acquainted.

18. Fred influences Brian, since there is an edge from Fred to Brian. Yvonne and Deborah influence Fred, since
there are edges from these vertices to Fred.

20. Team four beat the vertices to which there are edges from Team four, namely only Team three. The other
teams—Team one, Team two, Team five, and Team six—all beat Team four, since there are edges from them
to Team four.
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22. This is a directed multigraph with one edge from a to b for each call made by a to b . Rather than draw
the parallel edges with parallel lines, we have indicated what is intended by writing a numeral on the edge to
indicate how many calls were made, if it was more than one.

24. This is similar to the use of directed graphs to model telephone calls.
a) We can have a vertex for each mailbox or e-mail address in the network, with a directed edge between two
vertices if a message is sent from the tail of the edge to the head.
b) As in part (a) we use a directed edge for each message sent during the week.

26. Vertices with thousands or millions of edges going out from them could be the senders of such mass mailings.
The collection of heads of these edges would be the mailing lists themselves.

28. We make the subway stations the vertices, with an edge from station u to station v if there is a train going
from u to v without stopping. It is quite possible that some segments are one-way, so we should use directed
edges. (If there are no one-way segments, then we could use undirected edges.) There would be no need for
multiple edges, unless we had two kinds of edges, maybe with different colors, to represent local and express
trains. In that case, there could be parallel edges of different colors between the same vertices, because both a
local and an express train might travel the same segment. There would be no point in having loops, because
no passenger would want to travel from a station back to the same station without stopping.

30. A bipartite graph (this terminology is introduced in the next section) works well here. There are two types
of vertices—one type representing the critics and one type representing the movies. There is an edge between
vertex c (a critic vertex) and vertex m (a movie vertex) if and only if the critic represented by c has positively
recommended the movie represented by m . There are no edges between critic vertices and there are no edges
between movie vertices.

32. The model says that the statements for which there are edges to S6 must be executed before S6 , namely the
statements S1 , S2 , S3 , and S4 .

34. The vertices in the directed graph represent cities. Whenever there is a nonstop flight from city A to city B ,
we put a directed edge into our directed graph from vertex A to vertex B , and furthermore we label that
edge with the flight time. Let us see how to incorporate this into the mathematical definition. Let us call
such a thing a directed graph with weighted edges. It is defined to be a triple (V,E,W ), where (V,E) is
a directed graph (i.e., V is a set of vertices and E is a set of ordered pairs of elements of V ) and W is a
function from E to the set of nonnegative real numbers. Here we are simply thinking of W (e) as the weight
of edge e , which in this case is the flight time.

36. We can let the vertices represent people; an edge from u to v would indicate that u can send a message to v .
We would need a directed multigraph in which the edges have labels, where the label on each edge indicates
the form of communication (cell phone audio, text messaging, and so on).
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SECTION 10.2 Graph Terminology and Special Types of Graphs
2. In this pseudograph there are 5 vertices and 13 edges. The degree of vertex a is 6, since in addition to

the 4 nonloops incident to a , there is a loop contributing 2 to the degree. The degrees of the other vertices
are deg(b) = 6, deg(c) = 6, deg(d) = 5, and deg(e) = 3. There are no pendant or isolated vertices in this
pseudograph.

4. For the graph in Exercise 1, the sum is 2+4+1+0+2+3 = 12 = 2 ·6; there are 6 edges. For the pseudograph
in Exercise 2, the sum is 6+6+6+5+3 = 26 = 2 ·13; there are 13 edges. For the pseudograph in Exercise 3,
the sum is 3 + 2 + 4 + 0 + 6 + 0 + 4 + 2 + 3 = 24 = 2 · 12; there are 12 edges.

6. Model this problem by letting the vertices of a graph be the people at the party, with an edge between two
people if they shake hands. Then the degree of each vertex is the number of people the person that vertex
represents shakes hands with. By Theorem 1 the sum of the degrees is even (it is 2e).

8. In this directed multigraph there are 4 vertices and 8 edges. The degrees are deg−(a) = 2, deg+(a) = 2,
deg−(b) = 3, deg+(b) = 4, deg−(c) = 2, deg+(c) = 1, deg−(d) = 1, and deg+(d) = 1.

10. For Exercise 7 the sum of the in-degrees is 3+1+2+1 = 7, and the sum of the out-degrees is 1+2+1+3 = 7;
there are 7 edges. For Exercise 8 the sum of the in-degrees is 2+3+2+1 = 8, and the sum of the out-degrees
is 2 + 4 + 1 + 1 = 8; there are 8 edges. For Exercise 9 the sum of the in-degrees is 6 + 1 + 2 + 4 + 0 = 13,
and the sum of the out-degrees is 1 + 5 + 5 + 2 + 0 = 13; there are 13 edges.

12. Since there is an edge from a person to each of his or her acquaintances, the degree of v is the number of
people v knows. An isolated vertex would be a person who knows no one, and a pendant vertex would be
a person who knows just one other person (it is doubtful that there are many, if any, isolated or pendant
vertices). If the average degree is 1000, then the average person knows 1000 other people.

14. Since there is an edge from a person to each of the other actors with whom that person has appeared in a
movie, the degree of v is the number of other actors with whom that person has appeared. The neighborhood
of v is the set of actors with whom v as appeared. An isolated vertex would be a person who has appeared
only in movies in which he or she was the only actor, and a pendant vertex would be a person who has appeared
with only one other actor in any movie (it is doubtful that there are many, if any, isolated or pendant vertices).

16. Since there is an edge from a page to each page that it links to, the outdegree of a vertex is the number of
links on that page, and the in-degree of a vertex is the number of other pages that have a link to it.

18. This is essentially the same as Exercise 40 in Section 6.2, where the graph models the “know each other”
relation on the people at the party. See the solution given for that exercise. The number of people a person
knows is the degree of the corresponding vertex in the graph.

20. a) This graph has 7 vertices, with an edge joining each pair of distinct vertices.
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b) This graph is the complete bipartite graph on parts of size 1 and 8; we have put the part of size 1 in the
middle.

c) This is the complete bipartite graph with 4 vertices in each part.

d) This is the 7-cycle.

e) The 7-wheel is the 7-cycle with an extra vertex joined to the other 7 vertices. Warning: Some texts call
this W8 , to have the consistent notation that the subscript in the name of a graph should be the number of
vertices in that graph.

f) We take two copies of Q3 and join corresponding vertices.

22. This graph is bipartite, with bipartition {a, c} and {b, d, e} . In fact this is the complete bipartite graph K2,3 .
If this graph were missing the edge between a and d , then it would still be bipartite on the same sets, but
not a complete bipartite graph.

24. This is the complete bipartite graph K2,4 . The vertices in the part of size 2 are c and f , and the vertices in
the part of size 4 are a , b , d , and e .

26. a) By the definition given in the text, K1 does not have enough vertices to be bipartite (the sets in a partition
have to be nonempty). Clearly K2 is bipartite. There is a triangle in Kn for n > 2, so those complete graphs
are not bipartite. (See Exercise 23.)
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b) First we need n ≥ 3 for Cn to be defined. If n is even, then Cn is bipartite, since we can take one part
to be every other vertex. If n is odd, then Cn is not bipartite.
c) Every wheel contains triangles, so no Wn is bipartite.
d) Qn is bipartite for all n ≥ 1, since we can divide the vertices into these two classes: those bit strings with
an odd number of 1’s , and those bit strings with an even number of 1’s .

28. a) Following the lead in Example 14, we construct a bipartite graph in which the vertex set consists of
two subsets—one for the employees and one for the jobs. Let V1 = {Zamora,Agraharam,Smith,Chou,
Macintyre} , and let V2 = {planning,publicity, sales,marketing,development, industry relations} . Then the
vertex set for our graph is V = V1 ∪ V2 . Given the list of capabilities in the exercise, we must include
precisely the following edges in our graph: {Zamora,planning} , {Zamora, sales} , {Zamora,marketing} ,
{Zamora, industry relations} , {Agraharam,planning} , {Agraharam,development} , {Smith,publicity} ,
{Smith, sales} , {Smith, industry relations} , {Chou,planning} , {Chou, sales} , {Chou, industry relations} ,
{Macintyre,planning} , {Macintyre,publicity} , {Macintyre, sales} , {Macintyre, industry relations} .
b) Many assignments are possible. If we take it as an implicit assumption that there will be no more than
one employee assigned to the same job, then we want a maximum matching for this graph. So we look for five
edges in this graph that share no endpoints. A little trial and error gives us, for example, {Zamora,planning} ,
{Agraharam,development} , {Smith,publicity} , {Chou, sales} , {Macintyre, industry relations} . We assign
the employees to the jobs given in this matching.
c) This is a complete matching from the set of employees to the set of jobs, but not the other way around.
It is a maximum matching; because there were only five employees, no matching could have more than five
edges.

30. a) The partite sets are the set of women ({Anna,Barbara,Carol,Diane,Elizabeth}) and the set of men
({Jason,Kevin,Larry,Matt,Nick,Oscar}). We will use first letters for convenience. The given information
tells us to have edges AJ , AL , AM , BK , BL , CJ , CN , CO , DJ , DL , DN , DO , EJ , and EM in our
graph. We do not put an edge between a woman and a man she is not willing to marry.
b) By trial and error we easily find a matching (it’s not unique), such as AL , BK , CJ , DN , and EM .
c) This is a complete matching from the women to the men (as well as from the men to the women). A
complete matching is always a maximum matching.

32. Let d = maxA⊆V1 def(A), and fix A to be a subset of V1 that achieves this maximum. Thus d = |A|− |N(A)| .
First we show that no matching in G can touch more than |V1| − d vertices of V1 (or, equivalently, that no
matching in G can have more than |V1| − d edges). At most |N(A)| edges of such a matching can have
endpoints in A , and at most |V1| − |A| can have endpoints in V1 − A , so the total number of such edges is
at most |N(A)| + |V1| − |A| = |V1| − d . It remains to show that we can find a matching in G touching (at
least) |V1|−d vertices of V1 (i.e., a matching in G with |V1|−d edges). Following the hint, construct a larger
graph G′ by adding d new vertices to V2 and joining all of them to all the vertices of V1 . Then the condition
in Hall’s theorem holds in G′ , so G′ has a matching that touches all the vertices of V1 . At most d of these
edges do not lie in G , and so the edges of this matching that do lie in G form a matching in G with at least
|V1|− d edges.

34. Since all the vertices in the subgraph are adjacent in Kn , they are adjacent in the subgraph, i.e., the subgraph
is complete.

36. We just have to count the number of edges at each vertex, and then arrange these counts in nonincreasing
order. For Exercise 21, we have 4, 1, 1, 1, 1. For Exercise 22, we have 3, 3, 2, 2, 2. For Exercise 23, we have
4, 3, 3, 2, 2, 2. For Exercise 24, we have 4, 4, 2, 2, 2, 2. For Exercise 25, we have 3, 3, 3, 3, 2, 2.
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38. Assume that m ≥ n . Then each of the n vertices in one part has degree m , and each of the m vertices in
other part has degree n . Thus the degree sequence is m,m, . . . ,m, n, n, . . . , n , where the sequence contains
n copies of m and m copies of n . We put the m’s first because we assumed that m ≥ n . If n ≥ m , then of
course we would put the m copies of n first. If m = n , this would mean a total of 2n copies of n .

40. The 4-wheel (see Figure 5) with one edge along the rim deleted is such a graph. It has (4+3+3+2+2)/2 = 7
edges.

42. a) Since the number of odd-degree vertices has to be even, no graph exists with these degrees. Another reason
no such graph exists is that the vertex of degree 0 would have to be isolated but the vertex of degree 5 would
have to be adjacent to every other vertex, and these two statements are contradictory.
b) Since the number of odd-degree vertices has to be even, no graph exists with these degrees. Another reason
no such graph exists is that the degree of a vertex in a simple graph is at most 1 less than the number of
vertices.
c) A 6-cycle is such a graph. (See picture below.)
d) Since the number of odd-degree vertices has to be even, no graph exists with these degrees.
e) A 6-cycle with one of its diagonals added is such a graph. (See picture below.)
f) A graph consisting of three edges with no common vertices is such a graph. (See picture below.)
g) The 5-wheel is such a graph. (See picture below.)
h) Each of the vertices of degree 5 is adjacent to all the other vertices. Thus there can be no vertex of
degree 1. So no such graph exists.

44. Since isolated vertices play no essential role, we can assume that dn > 0. The sequence is graphic, so there is
some simple graph G such that the degrees of the vertices are d1 , d2 , . . . , dn . Without loss of generality, we
can label the vertices of our graph so that d(vi) = di . Among all such graphs, choose G to be one in which v1

is adjacent to as many of v2 , v3 , . . . , vd1+1 as possible. (The worst case might be that v1 is not adjacent to
any of these vertices.) If v1 is adjacent to all of them, then we are done. We will show that if there is a vertex
among v2 , v3 , . . . , vd1+1 that v1 is not adjacent to, then we can find another graph with d(vi) = di and
having v1 adjacent to one more of the vertices v2 , v3 , . . . , vd1+1 than is true for G . This is a contradiction
to the choice of G , and hence we will have shown that G satisfies the desired condition.

Under this assumption, then, let u be a vertex among v2 , v3 , . . . , vd1+1 that v1 is not adjacent to, and
let w be a vertex not among v2 , v3 , . . . , vd1+1 that v1 is adjacent to; such a vertex w has to exist because
d(v1) = d1 . Because the degree sequence is listed in nonincreasing order, we have d(u) ≥ d(w). Consider all
the vertices that are adjacent to u . It cannot be the case that w is adjacent to each of them, because then
w would have a higher degree than u (because w is adjacent to v1 as well, but u is not). Therefore there is
some vertex x such that edge ux is present but edge xw is not present. Note also that edge v1w is present
but edge v1u is not present. Now construct the graph G′ to be the same as G except that edges ux and v1w

are removed and edges xw and v1u are added. The degrees of all vertices are unchanged, but this graph has
v1 adjacent to more of the vertices among v2 , v3 , . . . , vd1+1 than is the case in G . That gives the desired
contradiction, and our proof is complete.

46. Given a sequence d1 , d2 , . . . , dn , if n = 2, then the sequence is graphic if and only if d1 = d2 = 1 (the graph
consists of one edge)—this is one base case. Otherwise, if n < d1 + 1, then the sequence is not graphic—this
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is the other base case. Otherwise (this is the recursive step), form a new sequence by deleting d1 , subtracting
1 from each of d2 , d3 , . . . , dd1+1 , deleting all 0’s , and rearranging the terms into nonincreasing order. The
original sequence is graphic if and only if the resulting sequence (with n− 1 terms) is graphic.

48. We list the subgraphs: the subgraph consisting of K2 itself, the subgraph consisting of two vertices and no
edges, and two subgraphs with 1 vertex each. Therefore the answer is 4.

50. We need to count this in an organized manner. First note that W3 is the same as K4 , and it will be easier
if we think of it as K4 . We will count the subgraphs in terms of the number of vertices they contain. There
are clearly just 4 subgraphs consisting of just one vertex. If a subgraph is to have two vertices, then there
are C(4, 2) = 6 ways to choose the vertices, and then 2 ways in each case to decide whether or not to include
the edge joining them. This gives us 6 · 2 = 12 subgraphs with two vertices. If a subgraph is to have three
vertices, then there are C(4, 3) = 4 ways to choose the vertices, and then 23 = 8 ways in each case to decide
whether or not to include each of the edges joining pairs of them. This gives us 4 · 8 = 32 subgraphs with
three vertices. Finally, there are the subgraphs containing all four vertices. Here there are 26 = 64 ways to
decide which edges to include. Thus our answer is 4 + 12 + 32 + 64 = 112.

52. a) We want to show that 2e ≥ vm . We know from Theorem 1 that 2e is the sum of the degrees of the
vertices. This certainly cannot be less than the sum of m for each vertex, since each degree is no less than m .
b) We want to show that 2e ≤ vM . We know from Theorem 1 that 2e is the sum of the degrees of the
vertices. This certainly cannot exceed the sum of M for each vertex, since each degree is no greater than M .

54. Since the vertices in one part have degree m , and vertices in the other part have degree n , we conclude that
Km,n is regular if and only if m = n .

56. We draw the answer by superimposing the graphs (keeping the positions of the vertices the same).

58. The union is shown here. The only common vertex is a , so we have reoriented the drawing so that the pieces
will not overlap.

60. The given information tells us that G∪G has 28 edges. However, G∪G is the complete graph on the number
of vertices n that G has. Since this graph has n(n − 1)/2 edges, we want to solve n(n − 1)/2 = 28. Thus
n = 8.

62. Following the ideas given in the solution to Exercise 63, we see that the degree sequence is obtained by
subtracting each of these numbers from 4 (the number of vertices) and reversing the order. We obtain
2, 2, 1, 1, 0.

64. Suppose the parts are of sizes k and v − k . Then the maximum number of edges the graph may have is
k(v − k) (an edge between each pair of vertices in different parts). By algebra or calculus, we know that the
function f(k) = k(v − k) achieves its maximum when k = v/2, giving f(k) = v2/4. Thus there are at most
v2/4 edges.
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66. We start by coloring any vertex red. Then we color all the vertices adjacent to this vertex blue. Then we
color all the vertices adjacent to blue vertices red, then color all the vertices adjacent to red vertices blue, and
so on. If we ever are in the position of trying to color a vertex with the color opposite to the color it already
has, then we stop and know that the graph is not bipartite. If the process terminates (successfully) before all
the vertices have been colored, then we color some uncolored vertex red (it will necessarily not be adjacent to
any vertices we have already colored) and begin the process again. Eventually we will have either colored all
the vertices (producing the bipartition) or stopped and decided that the graph is not bipartite.

68. Obviously (Gc)c and G have the same vertex set, so we need only show that they have the same directed
edges. But this is clear, since an edge (u, v) is in (Gc)c if and only if the edge (v, u) is in Gc if and only if
the edge (u, v) is in G .

70. Let |V1| = n1 and |V2| = n2 . Then the number of endpoints of edges in V1 is n · n1 , and the number of
endpoints of edges in V2 is n ·n2 . Since every edge must have one endpoint in each part, these two expressions
must be equal, and it follows (because n %= 0) that n1 = n2 , as desired.

72. In addition to the connections shown in Figure 13, we need to make connections between P (i, 3) and P (i, 0)
for each i , and between P (3, j) and P (0, j) for each j . The complete network is shown here. We can imagine
this drawn on a torus.

SECTION 10.3 Representing Graphs and Graph Isomorphism
2. This is similar to Exercise 1. The list is as follows.

Vertex Adjacent vertices
a b, d

b a, d, e

c d, e

d a, b, c

e b, c

4. This is similar to Exercise 3. The list is as follows.
Initial vertex Terminal vertices
a b, d

b a, c, d, e

c b, c

d a, e

e c, e
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6. This is similar to Exercise 5. The vertices are assumed to be listed in alphabetical order.




0 1 0 1 0
1 0 0 1 1
0 0 0 1 1
1 1 1 0 0
0 1 1 0 0





8. This is similar to Exercise 7. 



0 1 0 1 0
1 0 1 1 1
0 1 1 0 0
1 0 0 0 1
0 0 1 0 1





10. This graph has three vertices and is undirected, since the matrix is symmetric.

12. This graph is directed, since the matrix is not symmetric.

14. This is similar to Exercise 13. 



0 3 0 1
3 0 1 0
0 1 0 3
1 0 3 0





16. Because of the numbers larger than 1, we need multiple edges in this graph.

18. This is similar to Exercise 16.

20. This is similar to Exercise 19. 



1 1 1 1
0 1 0 1
1 0 1 0
1 1 1 1
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22. a) This matrix is symmetric, so we can take the graph to be undirected. No parallel edges are present, since
no entries exceed 1.

24. This is the adjacency matrix of a directed multigraph, because the matrix is not symmetric and it contains
entries greater than 1.

26. Each column represents an edge; the two 1’s in the column are in the rows for the endpoints of the edge.

Exercise 1 



1 1 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 1 1





Exercise 2 



1 1 0 0 0 0
1 0 1 1 0 0
0 0 0 0 1 1
0 1 1 0 1 0
0 0 0 1 0 1





28. For an undirected graph, the sum of the entries in the ith row is the same as the corresponding column sum,
namely the number of edges incident to the vertex i , which is the same as the degree of i minus the number
of loops at i (since each loop contributes 2 toward the degree count).

For a directed graph, the answer is dual to the answer for Exercise 29. The sum of the entries in the ith

row is the number of edges that have i as their initial vertex, i.e., the out-degree of i .

30. The sum of the entries in the ith row of the incidence matrix is the number of edges incident to vertex i , since
there is one column with a 1 in row i for each such edge.

32. a) This is just the matrix that has 0’s on the main diagonal and 1’s elsewhere, namely




0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0




.

b) We label the vertices so that the cycle goes v1, v2, . . . , vn, v1 . Then the matrix has 1’s on the diagonals
just above and below the main diagonal and in positions (1, n) and (n, 1), and 0’s elsewhere:





0 1 0 . . . 0 1
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 1 0





c) This matrix is the same as the answer in part (b), except that we add one row and column for the vertex
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in the middle of the wheel; in our matrix it is the last row and column:




0 1 0 . . . 0 1 1
1 0 1 . . . 0 0 1
0 1 0 . . . 0 0 1
...

...
...

. . .
...

...
...

0 0 0 . . . 0 1 1
1 0 0 . . . 1 0 1
1 1 1 . . . 1 1 0





d) Since the first m vertices are adjacent to none of the first m vertices but all of the last n , and vice versa,
this matrix splits up into four pieces: 



0 . . . 0 1 . . . 1
...

. . .
...

...
. . .

...
0 . . . 0 1 . . . 1
1 . . . 1 0 . . . 0
...

. . .
...

...
. . .

...
1 . . . 1 0 . . . 0





e) It is not convenient to show these matrices explicitly. Instead, we will give a recursive definition. Let Qn

be the adjacency matrix for the graph Qn . Then

Q1 =
[

0 1
1 0

]

and
Qn+1 =

[
Qn In
In Qn

]
,

where In is the identity matrix (since the corresponding vertices of the two n-cubes are joined by edges in
the (n + 1)-cube).

34. These graphs are isomorphic, since each is a path with five vertices. One isomorphism is f(u1) = v1 , f(u2) =
v2 , f(u3) = v4 , f(u4) = v5 , and f(u5) = v3 .

36. These graphs are not isomorphic. The second has a vertex of degree 4, whereas the first does not.

38. These two graphs are isomorphic. Each consists of a K4 with a fifth vertex adjacent to two of the vertices
in the K4 . Many isomorphisms are possible. One is f(u1) = v1 , f(u2) = v3 , f(u3) = v2 , f(u4) = v5 , and
f(u5) = v4 .

40. These graphs are not isomorphic—the degrees of the vertices are not the same (the graph on the right has a
vertex of degree 4, which the graph on the left lacks).

42. These graphs are not isomorphic. In the first graph the vertices of degree 4 are adjacent. This is not true of
the second graph.

44. The easiest way to show that these graphs are not isomorphic is to look at their complements. The complement
of the graph on the left consists of two 4-cycles. The complement of the graph on the right is an 8-cycle.
Since the complements are not isomorphic, the graphs are also not isomorphic.

46. This is immediate from the definition, since an edge is in G if and only if it is not in G , if and only if the
corresponding edge is not in H , if and only if the corresponding edge is in H .

48. An isolated vertex has no incident edges, so the row consists of all 0’s .
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50. The complementary graph consists of edges {a, c} , {c, d} , and {d, b} ; it is clearly isomorphic to the original
graph (send d to a , a to c , b to d , and c to b).

52. If G is self-complementary, then the number of edges of G must equal the number of edges of G . But the
sum of these two numbers is n(n− 1)/2, where n is the number of vertices of G , since the union of the two
graphs is Kn . Therefore the number of edges of G must be n(n−1)/4. Since this number must be an integer,
a look at the four cases shows that n may be congruent to either 0 or 1, but not congruent to either 2 or 3,
modulo 4.

54. An excellent resource for questions of the form “how many nonisomorphic graphs are there with . . . ?” is
Ronald C. Read and Robin J. Wilson, An Atlas of Graphs (Clarendon Press, 1998).
a) There are just two graphs with 2 vertices—the one with no edges, and the one with one edge.
b) A graph with three vertices can contain 0, 1, 2, or 3 edges. There is only one graph for each number of
edges, up to isomorphism. Therefore the answer is 4.
c) Here we look at graphs with 4 vertices. There is 1 graph with no edges, and 1 (up to isomorphism)
with a single edge. If there are two edges, then these edges may or may not be adjacent, giving us 2
possibilities. If there are three edges, then the edges may form a triangle, a star, or a path, giving us 3
possibilities. Since graphs with four, five, or six edges are just complements of graphs with two, one, or no
edges (respectively), the number of isomorphism classes must be the same as for these earlier cases. Thus our
answer is 1 + 1 + 2 + 3 + 2 + 1 + 1 = 11.

56. There are 9 such graphs. Let us first look at the graphs that have a cycle in them. There is only 1 with a
4-cycle. There are 2 with a triangle, since the fourth edge can either be incident to the triangle or not. If
there are no cycles, then the edges may all be in one connected component (see Section 10.4), in which case
there are 3 possibilities (a path of length four, a path of length three with an edge incident to one of the
middle vertices on the path, and a star). Otherwise, there are two components, which are necessarily either
two paths of length two, a path of length three plus a single edge, or a star with three edges plus a single edge
(3 possibilities in this case as well).

58. a) These graphs are both K3 , so they are isomorphic.
b) These are both simple graphs with 4 vertices and 5 edges. Up to isomorphism there is only one such graph
(its complement is a single edge), so the graphs have to be isomorphic.

60. We need only modify the definition of isomorphism of simple graphs slightly. The directed graphs G1 =
(V1, E1) and G2 = (V2, E2) are isomorphic if there is a one-to-one and onto function f : V1 → V2 such that
for all pairs of vertices a and b in V1 , (a, b) ∈ E1 if and only if (f(a), f(b)) ∈ E2 .

62. These two graphs are not isomorphic. In the first there is no edge from the unique vertex of in-degree 0 (u1 )
to the unique vertex of out-degree 0 (u2 ), whereas in the second graph there is such an edge, namely v3v4 .

64. We claim that the digraphs are isomorphic. To discover an isomorphism, we first note that vertices u1 , u2 , and
u3 in the first digraph are independent (i.e., have no edges joining them), as are u4 , u5 , and u6 . Therefore
these two groups of vertices will have to correspond to similar groups in the second digraph, namely v1 , v3 ,
and v5 , and v2 , v4 , and v6 , in some order. Furthermore, u3 is the only vertex among one of these groups of
u ’s to be the only one in the group with out-degree 2, so it must correspond to v6 , the vertex with the similar
property in the other digraph; and in the same manner, u4 must correspond to v5 . Now it is an easy matter,
by looking at where the edges lead, to see that the isomorphism (if there is one) must also pair up u1 with v2 ;
u2 with v4 ; u5 with v1 ; and u6 with v3 . Finally, we easily verify that this indeed gives an isomorphism—each
directed edge in the first digraph is present precisely when the corresponding directed edge is present in the
second digraph.
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66. To show that the property that a graph is bipartite is an isomorphic invariant, we need to show that if G

is bipartite and G is isomorphic to H , say via the function f , then H is bipartite. Let V1 and V2 be the
partite sets for G . Then we claim that f(V1)—the images under f of the vertices in V1 —and f(V2)—the
images under f of the vertices in V2 —form a bipartition for H . Indeed, since f must preserve the property
of not being adjacent, since no two vertices in V1 are adjacent, no two vertices in f(V1) are adjacent, and
similarly for V2 .

68. a) There are 10 nonisomorphic directed graphs with 2 vertices. To see this, first consider graphs that have
no edges from one vertex to the other. There are 3 such graphs, depending on whether they have no, one, or
two loops. Similarly there are 3 in which there is an edge from each vertex to the other. Finally, there are 4
graphs that have exactly one edge between the vertices, because now the vertices are distinguished, and there
can be or fail to be a loop at each vertex.
b) A detailed discussion of the number of directed graphs with 3 vertices would be rather long, so we will
just give the answer, namely 104. There are some useful pictures relevant to this problem (and part (c) as
well) in the appendix to Graph Theory by Frank Harary (Addison-Wesley, 1969).
c) The answer is 3069.

70. The answers depend on exactly how the storage is done, of course, but we will give naive answers that are at
least correct as approximations.
a) We need one adjacency list for each vertex, and the list needs some sort of name or header; this requires n

storage locations. In addition, each edge will appear twice, once in the list of each of its endpoints; this will
require 2m storage locations. Therefore we need n + 2m locations in all.
b) The adjacency matrix is a n× n matrix, so it requires n2 bits of storage.
c) The incidence matrix is a n×m matrix, so it requires nm bits of storage.

72. Assume the adjacency matrices of the two graphs are given. This will enable us to check whether a given pair
of vertices are adjacent in constant time. For each pair of vertices u and v in V1 , check that u and v are
adjacent in G1 if and only if f(u) and f(v) are adjacent in G2 . This takes O(1) comparisons for each pair,
and there are O(n2) pairs for a graph with n vertices.

SECTION 10.4 Connectivity
2. a) This is a path of length 4, but it is not a circuit, since it ends at a vertex other than the one at which it

began. It is simple, since no edges are repeated.
b) This is a path of length 4, which is a circuit. It is not simple, since it uses an edge more than once.
c) This is not a path, since there is no edge from d to b .
d) This is not a path, since there is no edge from b to d .

4. This graph is connected—it is easy to see that there is a path from every vertex to every other vertex.

6. The graph in Exercise 3 has three components: the piece that looks like a ∧ , the piece that looks like a ∨ , and
the isolated vertex. The graph in Exercise 4 is connected, with just one component. The graph in Exercise 5
has two components, each a triangle.

8. A connected component of a collaboration graph represent a maximal set of people with the property that for
any two of them, we can find a string of joint works that takes us from one to the other. The word “maximal”
here implies that nobody else can be added to this set of people without destroying this property.
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10. An actor is in the same connected component as Kevin Bacon if there is a path from that person to Bacon.
This means that the actor was in a movie with someone who was in a movie with someone who . . . who was
in a movie with Kevin Bacon. This includes Kevin Bacon, all actors who appeared in a movie with Kevin
Bacon, all actors who appeared in movies with those people, and so on.

12. a) Notice that there is no path from f to a , so the graph is not strongly connected. However, the underlying
undirected graph is clearly connected, so this graph is weakly connected.
b) Notice that the sequence a, b, c, d, e, f, a provides a path from every vertex to every other vertex, so this
graph is strongly connected.
c) The underlying undirected graph is clearly not connected (one component consists of the triangle), so this
graph is neither strongly nor weakly connected.

14. a) The cycle baeb guarantees that these three vertices are in one strongly connected component. Since there
is no path from c to any other vertex, and there is no path from any other vertex to d , these two vertices
are in strong components by themselves. Therefore the strongly connected components are {a, b, e} , {c} , and
{d} .
b) The cycle cdec guarantees that these three vertices are in one strongly connected component. The vertices
a , b , and f are in strong components by themselves, since there are no paths both to and from each of these
to every other vertex. Therefore the strongly connected components are {a} , {b} {c, d, e} , and {f} .
c) The cycle abcdfghia guarantees that these eight vertices are in one strongly connected component. Since
there is no path from e to any other vertex, this vertex is in a strong component by itself. Therefore the
strongly connected components are {a, b, c, d, f, g, h, i} and {e} .

16. The given conditions imply that there is a path from u to v , a path from v to u , a path from v to w ,
and a path from w to v . Concatenating the first and third of these paths gives a path from u to w , and
concatenating the fourth and second of these paths gives a path from w to u . Therefore u and w are mutually
reachable.

18. Let a, b, c, . . . , z be the directed path. Since z and a are in the same strongly connected component, there
is a directed path from z to a . This path appended to the given path gives us a circuit. We can reach any
vertex on the original path from any other vertex on that path by going around this circuit.

20. The graph G has a simple closed path containing exactly the vertices of degree 3, namely u1u2u6u5u1 . The
graph H has no simple closed path containing exactly the vertices of degree 3. Therefore the two graphs are
not isomorphic.

22. We notice that there are two vertices in each graph that are not in cycles of size 4. So let us try to construct
an isomorphism that matches them, say u1 ↔ v2 and u8 ↔ v6 . Now u1 is adjacent to u2 and u3 , and v2

is adjacent to v1 and v3 , so we try u2 ↔ v1 and u3 ↔ v3 . Then since u4 is the other vertex adjacent to
u3 and v4 is the other vertex adjacent to v3 (and we already matched u3 and v3 ), we must have u4 ↔ v4 .
Proceeding along similar lines, we then complete the bijection with u5 ↔ v8 , u6 ↔ v7 , and u7 ↔ v5 . Having
thus been led to the only possible isomorphism, we check that the 12 edges of G exactly correspond to the
12 edges of H , and we have proved that the two graphs are isomorphic.

24. a) Adjacent vertices are in different parts, so every path between them must have odd length. Therefore there
are no paths of length 2.
b) A path of length 3 is specified by choosing a vertex in one part for the second vertex in the path and a
vertex in the other part for the third vertex in the path (the first and fourth vertices are the given adjacent
vertices). Therefore there are 3 · 3 = 9 paths.
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c) As in part (a), the answer is 0.
d) This is similar to part (b); therefore the answer is 34 = 81.

26. Probably the best way to do this is to write down the adjacency matrix for this graph and then compute its
powers. The matrix is

A =





0 1 0 1 1 0
1 0 1 0 1 1
0 1 0 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0




.

a) To find the number of paths of length 2, we need to look at A2 , which is




3 1 2 1 2 2
1 4 1 3 2 2
2 1 3 0 3 1
1 3 0 3 1 2
2 2 3 1 4 1
2 2 1 2 1 3




.

Since the (3, 4)th entry is 0, so there are no paths of length 2.
b) The (3, 4)th entry of A3 turns out to be 8, so there are 8 paths of length 3.
c) The (3, 4)th entry of A4 turns out to be 10, so there are 10 paths of length 4.
d) The (3, 4)th entry of A5 turns out to be 73, so there are 73 paths of length 5.
e) The (3, 4)th entry of A6 turns out to be 160, so there are 160 paths of length 6.
f) The (3, 4)th entry of A7 turns out to be 739, so there are 739 paths of length 7.

28. We show this by induction on n . For n = 1 there is nothing to prove. Now assume the inductive hypothesis,
and let G be a connected graph with n + 1 vertices and fewer than n edges, where n ≥ 1. Since the sum
of the degrees of the vertices of G is equal to 2 times the number of edges, we know that the sum of the
degrees is less than 2n , which is less than 2(n + 1). Therefore some vertex has degree less than 2. Since G

is connected, this vertex is not isolated, so it must have degree 1. Remove this vertex and its edge. Clearly
the result is still connected, and it has n vertices and fewer than n − 1 edges, contradicting the inductive
hypothesis. Therefore the statement holds for G , and the proof is complete.

30. Let v be a vertex of odd degree, and let H be the component of G containing v . Then H is a graph itself,
so it has an even number of vertices of odd degree. In particular, there is another vertex w in H with odd
degree. By definition of connectivity, there is a path from v to w .

32. Vertices c and d are the cut vertices. The removal of either one creates a graph with two components. The
removal of any other vertex does not disconnect the graph.

34. The graph in Exercise 31 has no cut edges; any edge can be removed, and the result is still connected. For
the graph in Exercise 32, {c, d} is the only cut edge. There are several cut edges for the graph in Exercise 33:
{a, b} , {b, c} , {c, d} , {c, e} , {e, i} , and {h, i} .

36. First we show that if c is a cut vertex, then there exist vertices u and v such that every path between them
passes through c . Since the removal of c increases the number of components, there must be two vertices in
G that are in different components after the removal of c . Then every path between these two vertices has
to pass through c . Conversely, if u and v are as specified, then they must be in different components of the
graph with c removed. Therefore the removal of c resulted in at least two components, so c is a cut vertex.
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38. First suppose that e = {u, v} is a cut edge. Every circuit containing e must contain a path from u to v in
addition to just the edge e . Since there are no such paths if e is removed from the graph, every such path
must contain e . Thus e appears twice in the circuit, so the circuit is not simple. Conversely, suppose that e

is not a cut edge. Then in the graph with e deleted u and v are still in the same component. Therefore there
is a simple path P from u to v in this deleted graph. The circuit consisting of P followed by e is a simple
circuit containing e .

40. In the directed graph in Exercise 7, there is a path from b to each of the other three vertices, so {b} is a
vertex basis (and a smallest one). It is easy to see that {c} and {d} are also vertex bases, but a is not in any
vertex basis. For the directed graph in Exercise 8, there is a path from b to each of a and c ; on the other
hand, d must clearly be in every vertex basis. Thus {b, d} is a smallest vertex basis. So are {a, d} and {c, d} .
Every vertex basis for the directed graph in Exercise 9 must contain vertex e , since it has no incoming edges.
On the other hand, from any other vertex we can reach all the other vertices, so e together with any one of
the other four vertices will form a vertex basis.

42. By definition of graph, both G1 and G2 are nonempty. If they have no common vertex, then there clearly can
be no paths from v1 ∈ G1 to v2 ∈ G2 . In that case G would not be connected, contradicting the hypothesis.

44. First we obtain the inequality given in the hint. We claim that the maximum value of
∑

n2
i , subject to the

constraint that
∑

ni = n , is obtained when one of the ni’s is as large as possible, namely n− k + 1, and the
remaining ni’s (there are k− 1 of them) are all equal to 1. To justify this claim, suppose instead that two of
the ni’s were a and b , with a ≥ b ≥ 2. If we replace a by a + 1 and b by b− 1, then the constraint is still
satisfied, and the sum of the squares has changed by (a+1)2 +(b−1)2 −a2 − b2 = 2(a− b)+2 ≥ 2. Therefore
the maximum cannot be attained unless the ni’s are as we claimed. Since there are only a finite number
of possibilities for the distribution of the ni’s , the arrangement we give must in fact yield the maximum.
Therefore

∑
n2
i ≤ (n− k + 1)2 + (k − 1) · 12 = n2 − (k − 1)(2n− k), as desired.

Now by Exercise 43, the number of edges of the given graph does not exceed
∑

C(ni, 2) =
∑

(n2
i +ni)/2 =(

(
∑

n2
i ) + n

)
/2. Applying the inequality obtained above, we see that this does not exceed (n2 − (k− 1)(2n−

k) + n)/2, which after a little algebra is seen to equal (n − k)(n − k + 1)/2. The upshot of all this is that
the most edges are obtained if there is one component as large as possible, with all the other components
consisting of isolated vertices.

46. Under these conditions, the matrix has a block structure, with all the 1’s confined to small squares (of various
sizes) along the main diagonal. The reason for this is that there are no edges between different components.
See the picture for a schematic view. The only 1’s occur inside the small submatrices (but not all the entries
in these squares are 1’s , of course).

48. a) If any vertex is removed from Cn , the graph that remains is a connected graph, namely a path with n− 1
vertices.
b) If the central vertex is removed, the resulting graph is a cycle, which is connected. If a vertex on the cycle
of Wn is removed, the resulting graph is connected because every remaining vertex on the cycle is joined to
the central vertex.
c) Let v be a vertex in one part and w a vertex in the other part, after some vertex has been removed (these
exists because m and n are both greater than 1). Then v and w are joined by an edge, and every other
vertex is joined by an edge to either v or w , giving us a connected graph.
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d) We can use mathematical induction, based on the recursive definition of the n -cubes (see Example 8 in
Section 10.2). The basis step is Q2 , which is the same as C4 , and we argued in part (a) that it has no cut
vertex. Assume the inductive hypothesis. Let G be Qk+1 with a vertex removed. Then G consists of a copy
of Qk , which is certainly connected, a copy of Qk with a vertex removed, which is connected by the inductive
hypothesis, and at least one edge joining those two subgraphs; therefore G is connected.

50. a) Removing vertex b leaves two components, so κ(G) = 1. Removing one edge does not disconnect the graph,
but removing edges ab and eb do disconnect the graph, so λ(G) = 2. The minimum degree is clearly 2. Thus
only κ(G) < λ(G) is strict.
b) Removing vertex c leaves two components, so κ(G) = 1. It is not hard to see that removing two edges does
not disconnect the graph, but removing the three edges incident to vertex a , for example, does. Therefore
λ(G) = 3. Since the minimum degree is also 3, only κ(G) < λ(G) is a strict inequality.
c) It is easy to see that removing only one vertex or one edge does not disconnect this graph, but removing
vertices a and k , or removing edges ab and kl , does. Therefore κ(G) = λ(G) = 2. Since the minimum degree
is 3, only the inequality λ(G) < minv∈V deg(v) is strict.
d) With a little effort we see that κ(G) = λ(G) = minv∈V deg(v) = 4, so none of the inequalities is strict.

52. a) According to the discussion following Example 7, κ(Kn) = n − 1. Conversely, if G is a graph with n

vertices other than Kn , let u and v be two nonadjacent vertices of G . Then removing the n − 2 vertices
other than u and v disconnects G , so κ(G) < n− 1.
b) Since κ(Kn) ≤ λ(Kn) ≤ minv∈Kn deg(v) (see the discussion following Example 9) and the outside quantities
are both n − 1, it follows that λ(Kn) = n − 1. Conversely, if G is not Kn , then its minimum degree is less
than n− 1, so it edge connectivity is also less than n− 1.

54. Here is one example.

56. The length of a shortest path is the smallest l such that there is at least one path of length l from v to w .
Therefore we can find the length by computing successively A1 , A2 , A3 , . . . , until we find the first l such
that the (i, j)th entry of Al is not 0, where v is the ith vertex and w is the jth .

58. First we write down the adjacency matrix for this graph, namely

A =





0 1 0 1 0
1 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 1 1 0




.

Then we compute A2 and A3 , and look at the (1, 3)th entry of each. We find that these entries are 0 and 1,
respectively. By the reasoning given in Exercise 57, we conclude that a shortest path has length 3.

60. Suppose that f is an isomorphism from graph G to graph H . If G has a simple circuit of length k , say
u1, u2, . . . , uk, u1 , then we claim that f(u1), f(u2), . . . , f(uk), f(u1) is a simple circuit in H . Certainly this
is a circuit, since each edge uiui+1 (and uku1 ) in G corresponds to an edge f(ui)f(ui+1) (and f(uk)f(u1))
in H . Furthermore, since no edge was repeated in this circuit in G , no edge will be repeated when we use f

to move over to H .
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62. The adjacency matrix of G is as follows:

A =





0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 1 0
0 0 1 0 1 1 0
0 0 0 1 0 0 0
0 0 1 1 0 0 1
0 0 0 0 0 1 0





We compute A2 and A3 , obtaining

A2 =





2 1 1 1 0 1 0
1 2 1 1 0 1 0
1 1 4 1 1 1 1
1 1 1 3 0 1 1
0 0 1 0 1 1 0
1 1 1 1 1 3 0
0 0 1 1 0 0 1





and A3 =





2 3 5 2 1 2 1
3 2 5 2 1 2 1
5 5 4 6 1 6 1
2 2 6 2 3 5 1
1 1 1 3 0 1 1
2 2 6 5 1 2 3
1 1 1 1 1 3 0





.

Already every off-diagonal entry in A3 is nonzero, so we know that there is a path of length 3 between every
pair of distinct vertices in this graph. Therefore the graph G is connected.

On the other hand, the adjacency matrix of H is as follows:

A =





0 1 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0





We compute A2 through A5 , obtaining the following matrices:

A2 =





2 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 2 1 1
0 0 0 1 2 1
0 0 0 1 1 2




A3 =





0 2 2 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
0 0 0 2 3 3
0 0 0 3 2 3
0 0 0 3 3 2





A4 =





4 0 0 0 0 0
0 2 2 0 0 0
0 2 2 0 0 0
0 0 0 6 5 5
0 0 0 5 6 5
0 0 0 5 5 6




A5 =





0 4 4 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
0 0 0 10 11 11
0 0 0 11 10 11
0 0 0 11 11 10





If we compute the sum A + A2 + A3 + A4 + A5 we obtain




6 7 7 0 0 0
7 3 3 0 0 0
7 3 3 0 0 0
0 0 0 20 21 21
0 0 0 21 20 21
0 0 0 21 21 20




.

There is a 0 in the (1, 4) position, telling us that there is no path of length at most 5 from vertex a to
vertex d . Since the graph only has six vertices, this tells us that there is no path at all from a to d . Thus
the fact that there was a 0 as an off-diagonal entry in the sum told us that the graph was not connected.
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64. a) To proceed systematically, we list the states in order of decreasing population on the left shore. The allow-
able states are then (FWGC,Ø), (FWG,C), (FWC,G), (FGC,W ), (FG,WC), (WC,FG) (C,FWG),
(G,FWC), (W,FGC), and (Ø, FWGC). Notice that, for example, (GC,FW ) and (WGC,F ) are not
allowed by the rules.
b) The graph is as shown here. Notice that the boat can carry only the farmer and one other object, so the
transitions are rather restricted.

c) The path in the graph corresponds to the moves in the solution.
d) There are two simple paths from (FWGC,Ø) to (Ø, FWGC) that can be easily seen in the graph. One
is (FWGC,Ø), (WC,FG), (FWC,G), (W,FGC), (FWG,C), (G,FWC), (FG,WC), (Ø, FWGC). The
other is (FWGC,Ø), (WC,FG), (FWC,G), (C,FWG), (FGC,W ), (G,FWC), (FG,WC), (Ø, FWGC).
e) Both solutions cost $4.

66. If we use the ordered pair (a, b) to indicate that the three-gallon jug has a gallons in it and the five-gallon jug
has b gallons in it, then we start with (0, 0) and can do the following things: fill a jug that is empty or partially
empty (so that, for example, we can go from (0, 3) to (3, 3)); empty a jug; or transfer some or all of the contents
of a jug to the other jug , as long as we either completely empty the donor jug or completely fill the receiving
jug. A simple solution to the puzzle uses this directed path: (0, 0) → (3, 0) → (0, 3) → (3, 3) → (1, 5).

SECTION 10.5 Euler and Hamilton Paths
2. All the vertex degrees are even, so there is an Euler circuit. We can find one by trial and error, or by using

Algorithm 1. One such circuit is a, b, c, f, i, h, g, d, e, h, f, e, b, d, a .

4. This graph has no Euler circuit, since the degree of vertex c (for one) is odd. There is an Euler path between
the two vertices of odd degree. One such path is f, a, b, c, d, e, f, b, d, a, e, c .

6. This graph has no Euler circuit, since the degree of vertex b (for one) is odd. There is an Euler path between
the two vertices of odd degree. One such path is b, c, d, e, f, d, g, i, d, a, h, i, a, b, i, c .

8. All the vertex degrees are even, so there is an Euler circuit. We can find one by trial and error, or by using
Algorithm 1. One such circuit is a, b, c, d, e, j, c, h, i, d, b, g, h,m, n, o, j, i, n, l,m, f, g, l, k, f, a .

10. The graph model for this exercise is as shown here.

Vertices a and b are the banks of the river, and vertices c and d are the islands. Each vertex has even degree,
so the graph has an Euler circuit, such as a, c, b, a, d, c, a . Therefore a walk of the type described is possible.
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12. The algorithm is essentially the same as Algorithm 1. If there are no vertices of odd degree, then we simply
use Algorithm 1, of course. If there are exactly two vertices of odd degree, then we begin constructing the
initial path at one such vertex, and it will necessarily end at the other when it cannot be extended any further.
Thereafter we follow Algorithm 1 exactly, splicing new circuits into the path we have constructed so far until
no unused edges remain.

14. See the comments in the solution to Exercise 13. This graph has exactly two vertices of odd degree; therefore
it has an Euler path and can be so traced.

16. First suppose that the directed multigraph has an Euler circuit. Since this circuit provides a path from every
vertex to every other vertex, the graph must be strongly connected (and hence also weakly connected). Also,
we can count the in-degrees and out-degrees of the vertices by following this circuit; as the circuit passes
through a vertex, it adds one to the count of both the in-degree (as it comes in) and the out-degree (as it
leaves). Therefore the two degrees are equal for each vertex.

Conversely, suppose that the graph meets the conditions stated. Then we can proceed as in the proof of
Theorem 1 and construct an Euler circuit.

18. For Exercises 18–23 we use the results of Exercises 16 and 17. This directed graph satisfies the condition of
Exercise 17 but not that of Exercise 16. Therefore there is no Euler circuit. The Euler path must go from a

to d . One such path is a, b, d, b, c, d, c, a, d .

20. The conditions of Exercise 16 are met, so there is an Euler circuit, which is perforce also an Euler path. One
such path is a, d, b, d, e, b, e, c, b, a .

22. This directed graph satisfies the condition of Exercise 17 but not that of Exercise 16. Therefore there is no
Euler circuit. The Euler path must go from c to b . One such path is c, e, b, d, c, b, f, d, e, f, e, a, f, a, b, c, b .
(There is no Euler circuit, however, since the conditions of Exercise 16 are not met.)

24. The algorithm is identical to Algorithm 1.

26. a) The degrees of the vertices (n− 1) are even if and only if n is odd. Therefore there is an Euler circuit if
and only if n is odd (and greater than 1, of course).
b) For all n ≥ 3, clearly Cn has an Euler circuit, namely itself.
c) Since the degrees of the vertices around the rim are all odd, no wheel has an Euler circuit.
d) The degrees of the vertices are all n . Therefore there is an Euler circuit if and only if n is even (and
greater than 0, of course).

28. a) Since the degrees of the vertices are all m and n , this graph has an Euler circuit if and only if both of the
positive integers m and n are even.
b) All the graphs listed in part (a) have an Euler circuit, which is also an Euler path. In addition, the graphs
K2,n for odd n (and Km,2 for odd m) have exactly 2 vertices of odd degree, so they have an Euler path but
not an Euler circuit. Also, K1,1 obviously has an Euler path. All other complete bipartite graphs have too
many vertices of odd degree.

30. This graph can have no Hamilton circuit because of the cut edge {c, f} . Every simple circuit must be confined
to one of the two components obtained by deleting this edge.

32. As in Exercise 30, the cut edge ({e, f} in this case) prevents a Hamilton circuit.
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34. This graph has no Hamilton circuit. If it did, then certainly the circuit would have to contain edges {d, a}
and {a, b} , since these are the only edges incident to vertex a . By the same reasoning, the circuit would have
to contain the other six edges around the outside of the figure. These eight edges already complete a circuit,
and this circuit omits the nine vertices on the inside. Therefore there is no Hamilton circuit.

36. It is easy to find a Hamilton circuit here, such as a , d , g , h , i , f , c , e , b , and back to a .

38. This graph has the Hamilton path a, b, c, d, e .

40. This graph has no Hamilton path. There are three vertices of degree 1; each of them would have to be an end
vertex of every Hamilton path. Since a path has only 2 ends, this is impossible.

42. It is easy to find the Hamilton path d , c , a , b , e here.

44. a) Obviously Kn has a Hamilton circuit for all n ≥ 3 but not for n ≤ 2.
b) Obviously Cn has a Hamilton circuit for all n ≥ 3.
c) A Hamilton circuit for Cn can easily be extended to one for Wn by replacing one edge along the rim of
the wheel by two edges, one going to the center and the other leading from the center. Therefore Wn has a
Hamilton circuit for all n ≥ 3.
d) This is Exercise 49; see the solution given for it.

46. We do the easy part first, showing that the graph obtained by deleting a vertex from the Petersen graph has a
Hamilton circuit. By symmetry, it makes no difference which vertex we delete, so assume that it is vertex j .
Then a Hamilton circuit in what remains is a, e, d, i, g, b, c, h, f, a . Now we show that the entire graph has no
Hamilton circuit. Assume that a Hamilton circuit exists. Not all the edges around the outside can be used, so
without loss of generality assume that {c, d} is not used. Then {e, d} , {d, i} , {h, c} , and {b, c} must all be
used. If {a, f} is not used, then {e, a} , {a, b} , {f, i} , and {f, h} must be used, forming a premature circuit.
Therefore {a, f} is used. Without loss of generality we may assume that {e, a} is also used, and {a, b} is not
used. Then {b, g} is also used, and {e, j} is not. But this requires {g, j} and {h, j} to be used, forming a
premature circuit b, c, h, j, g, b . Hence no Hamilton circuit can exist in this graph.

48. We want to look only at odd n , since if n is even, then being at least (n− 1)/2 is the same as being at least
n/2, in which case Dirac’s theorem would apply. One way to avoid having a Hamilton circuit is to have a cut
vertex—a vertex whose removal disconnects the graph. The simplest example would be the “bow-tie” graph
with five vertices (a , b , c , d , and e), where cut vertex c is adjacent to each of the other vertices, and the
only other edges are ab and de . Every vertex has degree at least (5 − 1)/2 = 2, but there is no Hamilton
circuit.

50. Let us begin at vertex a and walk toward vertex b . Then the circuit begins a, b, c . At this point we must
choose among three edges to continue the circuit. If we choose edge {c, f} , then we will have disconnected
the graph that remains, so we must not choose this edge. Suppose instead that the circuit continues with edge
{c, d} . Then the entire circuit is forced to be a, b, c, d, e, c, f, a .

52. This proof is rather hard. See page 63 of Graph Theory with Applications by J. A. Bondy and U. S. R. Murty
(American Elsevier, 1976).

54. An Euler path will cover every link, so it can be used to test the links. A Hamilton path will cover all the
devices, so it can be used to test the devices.
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56. We draw one vertex for each of the 9 squares on the board. We then draw an edge from a vertex to each
vertex that can be reached by moving 2 units horizontally and 1 unit vertically or vice versa. The result is as
shown.

58. a) In a Hamilton path we need to visit each vertex once, moving along the edges. A knight’s tour is precisely
such a path, since we visit each square once, making legal moves.
b) This is the same as part (a), except that a re-entrant tour must return to its starting point, just as a
Hamilton circuit must return to its starting point.

60. In a 3× 3 board, the middle vertex is isolated (see solution to Exercise 56). In other words, there is no knight
move to or from the middle square. Thus there can clearly be no knight’s tour. There is a tour of the rest of
the squares, however, as the picture above shows.

62. Each square of the board can be thought of as a pair of integers (x, y). Let A be the set of squares for which
x + y is odd, and let B be the set of squares for which x + y is even. This partitions the vertex set of the
graph representing the legal moves of a knight on the board into two parts. Now every move of the knight
changes x+ y by an odd number—either 1 + 2 = 3, 2− 1 = 1, 1− 2 = −1, or −1− 2 = −3. Therefore every
edge in this graph joins a vertex in A to a vertex in B . Thus the graph is bipartite.

64. A little trial and error, loosely following the hint, produced the following solution. The numbers show the
order in which the squares are to be traversed.

66. We assume that the graph is given to us in terms of adjacency lists for all the vertices. We also maintain a
queue (or stack) of vertices that have been visited, eliminating vertices when they are incident to no more
unused edges. Each vertex in this list also has a pointer to a spot in the circuit constructed so far at which
this vertex appears. We keep the circuit as a circularly linked list. Finding the initial circuit can be done
by starting at some vertex, and as we reach each new vertex that still has unused edges emanating from it
(which we can know by consulting its adjacency list) we add the new edge to the circuit and delete it from
the relevant adjacency lists. All this takes O(m) time. For the while loop, finding a vertex at which to begin
the subcircuit can be done in O(1) time by consulting the queue, and then finding the subcircuit takes O(m)
time. Splicing the subcircuit into the circuit takes O(1) time. Furthermore, finding all the subcircuits takes
at most O(m) time in total, because each edge is used only once in the entire process. Thus the total time is
O(m).
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SECTION 10.6 Shortest-Path Problems
2. In the solution to Exercise 5 we find a shortest path. Its length is 7.

4. In the solution to Exercise 5 we find a shortest path. Its length is 16.

6. The solution to this problem is given in the solution to Exercise 7, where the paths themselves are found.

8. In theory, we can use Dijkstra’s algorithm. In practice with graphs of this size and shape, we can tell by
observation what the conceivable answers will be and find the one that produces the minimum total length
by inspection.
a) The direct path is the shortest.
b) The path via Chicago only is the shortest.
c) The path via Atlanta and Chicago is the shortest.
d) The path via Atlanta, Chicago and Denver is the shortest.

10. The comments for Exercise 8 apply.
a) The direct flight is the cheapest.
b) The path via New York is the cheapest.
c) The path via New York and Chicago is the cheapest.
d) The path via New York is the cheapest.

12. The comments for Exercise 8 apply.
a) The path through Chicago is the fastest.
b) The path via Chicago is the fastest.
c) The path via Denver (or the path via Los Angeles) is the fastest.
d) The path via Dallas (or the path via Chicago) is the fastest.

14. Here we simply assign the weight of 1 to each edge.

16. We need to keep track of the vertex from which a shortest path known so far comes, as well as the length of
that path. Thus we add an array P to the algorithm, where P (v) is the previous vertex in the best known
path to v . We modify Algorithm 1 so that when L is updated by the statement L(v) := L(u) + w(u, v),
we also set P (v) := u . Once the while loop has terminated, we can obtain a shortest path from a to z in
reverse by starting with z and following the pointers in P . Thus the path in reverse is z , P (z), P (P (z)),
. . . , P (P (· · ·P (z) · · ·)) = a .

18. The shortest path need not be unique. For example, we could have a graph with vertices a , b , c , and d ,
with edges {a, b} of weight 3, {b, c} of weight 7, {a, d} of weight 4, and {d, c} of weight 6. There are two
shortest paths from a to c .

20. We give an ad hoc analysis. Recall that a simple path cannot use any edge more than once. Furthermore,
since the path must use an odd number of edges incident to a and an odd number of edges incident to z , the
path must omit at least two edges, one at each end. The best we could hope for, then, in trying for a path
of maximum length, is that the path leaves out the shortest such edges—{a, c} and {e, z} . If the path leaves
out these two edges, then it must also leave out one more edge incident to c , since the path must use an even
number of the three remaining edges incident to c . The best we could hope for is that the path omits the
two aforementioned edges and edge {b, c} . Since 2 + 1 < 4, this is better than the other possibility, namely
omitting edge {a, b} instead of edge {a, c} . Finally, we find a simple path omitting only these three edges,
namely a, b, d, c, e, d, z , with length 35, and thus we conclude that it is a longest simple path from a to z .
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A similar argument shows that the longest simple path from c to z is c, a, b, d, c, e, d, z

22. It follows by induction on i that after the ith pass through the triply nested for loop in the pseudocode,
d(vj , vk) gives, for each j and k , the shortest distance between vj and vk using only intermediate vertices
vm for m ≤ i . Therefore after the final path, we have obtained the shortest distance.

24. Consider the graph with vertices a , b , and z , where the weight of {a, z} is 2, the weight of {a, b} is 3, and
the weight of {b, z} is −2. Then Dijkstra’s algorithm will decide that L(z) = 2 and stop, whereas the path
a, b, z is shorter (has length 1).

26. The following table shows the twelve different Hamilton circuits and their weights:
Circuit Weight

a-b -c-d -e-a 3 + 10 + 6 + 1 + 7 = 27
a-b -c-e-d -a 3 + 10 + 5 + 1 + 4 = 23
a-b -d -c-e-a 3 + 9 + 6 + 5 + 7 = 30
a-b -d -e-c-a 3 + 9 + 1 + 5 + 8 = 26
a-b -e-c-d -a 3 + 2 + 5 + 6 + 4 = 20
a-b -e-d -c-a 3 + 2 + 1 + 6 + 8 = 20
a-c-b -d -e-a 8 + 10 + 9 + 1 + 7 = 35
a-c-b -e-d -a 8 + 10 + 2 + 1 + 4 = 25
a-c-d -b -e-a 8 + 6 + 9 + 2 + 7 = 32
a-c-e-b -d -a 8 + 5 + 2 + 9 + 4 = 28
a-d -b -c-e-a 4 + 9 + 10 + 5 + 7 = 35
a-d -c-b -e-a 4 + 6 + 10 + 2 + 7 = 29

Thus we see that the circuits a-b -e-c-d -a and a-b -e-d -c-a (or the same circuits starting at some other point
but traversing the vertices in the same or exactly opposite order) are the ones with minimum total weight.

28. The following table shows the twelve different Hamilton circuits and their weights, where we abbreviate the
cities with the beginning letter of their name, except that New Orleans is O :

Circuit Weight

S -B -N -O -P -S 409 + 109 + 229 + 309 + 119 = 1175
S -B -N -P -O -S 409 + 109 + 319 + 309 + 429 = 1575
S -B -O -N -P -S 409 + 239 + 229 + 319 + 119 = 1315
S -B -O -P -N -S 409 + 239 + 309 + 319 + 389 = 1665
S -B -P -N -O -S 409 + 379 + 319 + 229 + 429 = 1765
S -B -P -O -N -S 409 + 379 + 309 + 229 + 389 = 1715
S -N -B -O -P -S 389 + 109 + 239 + 309 + 119 = 1165
S -N -B -P -O -S 389 + 109 + 379 + 309 + 429 = 1615
S -N -O -B -P -S 389 + 229 + 239 + 379 + 119 = 1355
S -N -P -B -O -S 389 + 319 + 379 + 239 + 429 = 1755
S -O -B -N -P -S 429 + 239 + 109 + 319 + 119 = 1215
S -O -N -B -P -S 429 + 229 + 109 + 379 + 119 = 1265

As a check of our arithmetic, we can compute the total weight (price) of all the trips (it comes to 17580) and
check that it is equal to 6 times the sum of the weights (which here is 2930), since each edge appears in six
paths (and sure enough, 17580 = 6 · 2930). We see that the circuit S -N -B -O -P -S (or the same circuit
starting at some other point but traversing the vertices in the same or exactly opposite order) is the one with
minimum total weight, 1165.
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30. We follow the hint. Let G be our original weighted graph, and construct a new graph G′ as follows. The
vertices and edges of G′ are the same as the vertices and edges of G . For each pair of vertices u and v

in G , use an algorithm such as Dijkstra’s algorithm to find a shortest path (i.e., one of minimum total weight)
between u and v . Record this path in a table, and assign to the edge {u, v} in G′ the weight of this path.
It is now clear that finding the circuit of minimum total weight in G′ that visits each vertex exactly once is
equivalent to finding the circuit of minimum total weight in G that visits each vertex at least once.

SECTION 10.7 Planar Graphs
2. For convenience we label the vertices a, b, c, d, e , starting with the vertex in the lower left corner and proceeding

clockwise around the outside of the figure as drawn in the exercise. If we move vertex d down, then the crossings
can be avoided.

4. For convenience we label the vertices a, b, c, d, e , starting with the vertex in the lower left corner and proceeding
clockwise around the outside of the figure as drawn in the exercise. If we move vertex b far to the right, and
squeeze vertices d and e in a little, then we can avoid crossings.

6. This graph is easily untangled and drawn in the following planar representation.

8. If one has access to software such as The Geometer’s Sketchpad , then this problem can be solved by drawing
the graph and moving the points around, trying to find a planar drawing. If we are unable to find one, then
we look for a reason why—either a subgraph homeomorphic to K5 or one homeomorphic to K3,3 (always try
the latter first). In this case we find that there is in fact an actual copy of K3,3 , with vertices a , c , and e in
one set and b , d , and f in the other.

10. The argument is similar to the argument when v3 is inside region R2 . In the case at hand the edges between
v3 and v4 and between v3 and v5 separate R1 into two subregions, R11 (bounded by v1 , v4 , v3 , and v5 )
and R12 (bounded by v2 , v4 , v3 , and v5 ). Now again there is no way to place vertex v6 without forcing a
crossing. If v6 is in R2 , then there is no way to draw the edge {v3, v6} without crossing another edge. If v6

is in R11 , then the edge between v2 and v6 cannot be drawn; whereas if v6 is in R12 , then the edge between
v1 and v6 cannot be drawn.

12. Euler’s formula says that v − e + r = 2. We are given v = 8, and from the fact that the sum of the degrees
equals twice the number of edges, we deduce that e = (3 ·8)/2 = 12. Therefore r = 2−v+e = 2−8+12 = 6.

14. Euler’s formula says that v − e + r = 2. We are given e = 30 and r = 20. Therefore v = 2 − r + e =
2 − 20 + 30 = 12.
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16. A bipartite simple graph has no simple circuits of length three. Therefore the inequality follows from Corol-
lary 3.

18. If we add k−1 edges, we can make the graph connected, create no new regions, and still avoid edge crossings.
(We just add an edge from one vertex in one component, incident to the unbounded region, to one vertex in
each of the other components.) For this new graph, Euler’s formula tells us that v− (e+ k− 1) + r = 2. This
simplifies algebraically to r = e− v + k + 1.

20. This graph is not homeomorphic to K3,3 , since by rerouting the edge between a and h we see that it is planar.

22. Replace each vertex of degree two and its incident edges by a single edge. Then the result is K3,3 : the parts
are {a, e, i} and {c, g, k} . Therefore this graph is homeomorphic to K3,3 .

24. This graph is nonplanar. If we delete the five curved edges outside the big pentagon, then the graph is
homeomorphic to K5 . We can see this by replacing each vertex of degree 2 and its two edges by one edge.

26. If we follow the proof in Example 3, we see how to construct a planar representation of all of K3,3 except for
one edge. In particular, if we place vertex v6 inside region R22 of Figure 7(b), then we can draw edges from
v6 to v2 and v3 with no crossings, and to v1 with only one crossing. Furthermore, since K3,3 is not planar,
its crossing number cannot be 0. Hence its crossing number is 1.

28. First note that the Petersen graph with one edge removed is not planar; indeed, by Example 9, the Petersen
graph with three mutually adjacent edges removed is not planar. Therefore the crossing number must be
greater than 1. (If it were only 1, then removing the edge that crossed would give a planar drawing of the
Petersen graph minus one edge.) The following figure shows a drawing with only two crossings. (This drawing
was obtained by a little trial and error.) Therefore the crossing number must be 2. (In this figure, the vertices
are labeled as in Figure 14(a).)

30. Since by Exercise 26 we know how to embed all but one edge of K3,3 in one plane with no crossings, we can
embed all of K3,3 in two planes with no crossings simply by drawing the last edge in the second plane.

32. By Corollary 1 to Euler’s formula, we know that in one plane we can draw without crossing at most 3v − 6
edges from a graph with v vertices. Therefore if a graph has v vertices and e edges, then it will require at
least e/(3v−6) planes in order to draw all the edges without crossing. Since the thickness is a whole number,
it must be greater than or equal to the smallest integer at least this large, i.e., ,e/(3v − 6)- .

34. This is essentially the same as Exercise 32, using Corollary 3 in place of Corollary 1.

36. As in the solution to Exercise 37, we represent the torus by a rectangle. The figure below shows how K5 is
embedded without crossings. (The reader might try to embed K6 or K7 on a torus.)
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SECTION 10.8 Graph Coloring
2. We construct the dual as in Exercise 1.

As in Exercise 1, the number of colors needed to color this map is the same as the number of colors needed
to color the dual graph. Clearly two colors are necessary and sufficient: one for vertices (regions) A and C ,
and the other for B and D .

4. We construct the dual as in Exercise 1.

As in Exercise 1, the number of colors needed to color this map is the same as the number of colors needed to
color the dual graph. Clearly two colors are necessary and sufficient: one for vertices (regions) A , C , and D ,
and the other for B , E , and F .

6. Since there is a triangle, at least 3 colors are needed. To show that 3 colors suffice, notice that we can color
the vertices around the outside alternately using red and blue, and color vertex g green.

8. Since there is a triangle, at least 3 colors are needed. The coloring in which b and c are blue, a and f are
red, and d and e are green shows that 3 colors suffice.

10. Since vertices b , c , h , and i form a K4 , at least 4 colors are required. A coloring using only 4 colors (and
we can get this by trial and error, without much difficulty) is to let a and c be red; b , d , and f , blue; g

and i , green; and e and h , yellow.

12. In Exercise 5 the chromatic number is 3, but if we remove vertex a , then the chromatic number will fall to 2.
In Exercise 6 the chromatic number is 3, but if we remove vertex g , then the chromatic number will fall to 2.
In Exercise 7 the chromatic number is 3, but if we remove vertex b , then the chromatic number will fall to 2.
In Exercise 8 the chromatic number was shown to be 3. Even if we remove a vertex, at least one of the two
triangles ace and bdf must remain, since they share no vertices. Therefore the smaller graph will still have
chromatic number 3. In Exercise 9 the chromatic number is 2. Obviously it is not possible to reduce it to 1
by removing one vertex, since at least one edge will remain. In Exercise 10 the chromatic number was shown
to be 4, and a coloring was provided. If we remove vertex h and recolor vertex e red, then we can eliminate
color yellow from that solution. Therefore we will have reduced the chromatic number to 3. Finally, the graph
in Exercise 11 will still have a triangle, no matter what vertex is removed, so we cannot lower its chromatic
number below 3 by removing a vertex.

14. Since the map is planar, we know that four colors suffice. That four colors are necessary can be seen by looking
at Kentucky. It is surrounded by Tennessee, Missouri, Illinois, Indiana, Ohio, West Virginia, and Virginia;
furthermore the states in this list form a C7 , each one adjacent to the next. Therefore at least three colors
are needed to color these seven states (see Exercise 16), and then a fourth is necessary for Kentucky.

16. Let the circuit be v1 , v2 , . . . , vn , v1 , where n is odd. Suppose that two colors (red and blue) sufficed to
color the graph containing this circuit. Without loss of generality let the color of v1 be red. Then v2 must
be blue, v3 must be red, and so on, until finally vn must be red (since n is odd). But this is a contradiction,
since vn is adjacent to v1 . Therefore at least three colors are needed.
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18. We draw the graph in which two vertices (representing locations) are adjacent if the locations are within 150
miles of each other.

Clearly three colors are necessary and sufficient to color this graph, say red for vertices 4, 2, and 6; blue for
3 and 5; and yellow for 1. Thus three channels are necessary and sufficient.

20. We let the vertices of a graph be the animals, and we draw an edge between two vertices if the animals they
represent cannot be in the same habitat because of their eating habits. A coloring of this graph gives an
assignment of habitats (the colors are the habitats).

22. We model the circuit board with a graph: The n vertices correspond to the n devices, with an edge between
each pair of devices connected by a wire. Then coloring the edges corresponds to coloring the wires, and the
given requirement about the colors of the wires is exactly the requirement for an edge coloring. Therefore the
number of colors needed for the wires is the edge chromatic number of the graph.

24. If there is a vertex with degree d , then there are d edges incident with a common vertex. Thus in any edge
coloring each of those edges must get a different color, so we need at least d colors.

26. This is really a problem about scheduling a round-robin tournament. Let the vertices of Kn be v1, v2, . . . , vn .
These are the players in the tournament. We join two vertices with an edge of color i if those two players
meet in round i of the tournament. First suppose that n is even. Place vn in the center of a circle, with the
remaining vertices evenly spaced on the circle, as shown here for n = 8. The first round of the tournament
uses edges vnv1 , v2vn−1 , v3vn−2 , . . . , vn/2v(n/2)+1 ; these edges, shown in the diagram, get color 1.

For the second round, rotate this picture by an angle of 360/(n− 1) degrees clockwise. Thus in round 2,
the matchings are vnv2 , v1v3 , v4vn−1 , v5vn−2 , . . . , and so on. Continue in this manner for n− 1 rounds in
all. It is not hard to see that every edge of Kn appears in exactly one of these matchings. (Indeed, the edges
other than the radial edge join vertices whose indexes differ by 1, 2, . . . , (n− 2)/2 modulo n− 1.) Therefore
the edge chromatic number of Kn when n is even is n− 1. (We cannot do better than this because we can
have at most n/2 edges of each color and need (n− 1)n/2 edges in all.)

For n odd (other than the trivial case n = 1), we can have at most (n− 1)/2 edges of each color, and so
we will need at least n colors. We can accomplish this in the same manner by creating a fictitious (n + 1)st

player and using the procedure for n even. (Playing against player n + 1 means having a bye during that
round of the tournament.) Thus the edge chromatic number of Kn when n is odd is n .

28. Since each of the n vertices in this subgraph must have a different color, the chromatic number must be at
least n .
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30. Our pseudocode is as follows. The comments should explain how it implements the algorithm.

procedure coloring(G : simple graph)
{assume that the vertices are labeled 1, 2, . . . , n so that

deg(1) ≥ deg(2) ≥ · · · ≥ deg(n) }
for i := 1 to n

c(i) := 0 {originally no vertices are colored}
count := 0 {no vertices colored yet}
color := 1 {try the first color}
while count < n {there are still vertices to be colored}

for i := 1 to n {try to color vertex i with color color }
if c(i) = 0 {vertex i is not yet colored} then

c(i) := color {assume we can do it until we find out otherwise}
for j := 1 to n

if {i, j} is an edge and c(j) = color
then c(i) := 0 {we found out otherwise}

if c(i) = color
then count := count + 1 {the new coloring of i worked}

color := color + 1 {we have to go on to the next color}
{the coloring is complete}

32. We know that the chromatic number of an odd cycle is 3 (see Example 4). If we remove one edge, then we get
a path, which clearly can be colored with two colors. This shows that the cycle is chromatically 3-critical.

34. Although the chromatic number of W4 is 3, if we remove one edge then the graph still contains a triangle, so
its chromatic number remains 3. Therefore W4 is not chromatically 3-critical.

36. First let us prove some general results. In a complete graph, each vertex is adjacent to every other vertex, so
each vertex must get its own set of k different colors. Therefore if there are n vertices, kn colors are clearly
necessary and sufficient. Thus χk(Kn) = kn . In a bipartite graph, every vertex in one part can get the same
set of k colors, and every vertex in the other part can get the same set of k colors (a disjoint set from the
colors assigned to the vertices in the first part). Therefore 2k colors are sufficient, and clearly 2k colors are
required if there is at least one edge. Let us now look at the specific graphs.
a) For this complete graph situation we have k = 2 and n = 3, so 2 ·3 = 6 colors are necessary and sufficient.
b) As in part (a), the answer is kn , which here is 2 · 4 = 8.
c) Call the vertex in the middle of the wheel m , and call the vertices around the rim, in order, a , b , c , and d .
Since m , a , and b form a triangle, we need at least 6 colors. Assign colors 1 and 2 to m , 3 and 4 to a , and
5 and 6 to b . Then we can also assign 3 and 4 to c , and 5 and 6 to d , completing a 2-tuple coloring with 6
colors. Therefore χ2(W4) = 6.
d) First we show that 4 colors are not sufficient. If we had only colors 1 through 4, then as we went around
the cycle we would have to assign, say, 1 and 2 to the first vertex, 3 and 4 to the second, 1 and 2 to the third,
and 3 and 4 to the fourth. This gives us no colors for the final vertex. To see that 5 colors are sufficient, we
simply give the coloring: In order around the cycle the colors are {1, 2} , {3, 4} , {1, 5} , {2, 4} , and {3, 5} .
Therefore χ2(C5) = 5.
e) By our general result on bipartite graphs, the answer is 2k = 2 · 2 = 4.
f) By our general result on complete graphs, the answer is kn = 3 · 5 = 15.
g) We claim that the answer is 8. To see that eight colors suffice, we can color the vertices as follows in
order around the cycle: {1, 2, 3} , {4, 5, 6} , {1, 2, 7} , {3, 6, 8} , and {4, 5, 7} . Showing that seven colors are not
sufficient is harder. Assume that a coloring with seven colors exists. Without loss of generality, color the first
vertex {1, 2, 3} and color the second vertex {4, 5, 6} . If the third vertex is colored {1, 2, 3} , then the fourth
and fifth vertices would need to use six colors different from 1, 2, and 3, for a total of nine colors. Therefore
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without loss of generality, assume that the third vertex is colored {1, 2, 7} . But now the other two vertices
cannot have colors 1 or 2, and they must have six different colors, so eight colors would be required in all.
This is a contradiction, so there is in fact no coloring with just seven colors.
h) By our general result on bipartite graphs, the answer is 2k = 2 · 3 = 6.

38. As we observed in the solution to Exercise 36, the answer is 2k if G has at least one edge (and it is clearly k

if G has no edges, since every vertex can get the same colors).

40. We use induction on the number of vertices of the graph. Every graph with six or fewer vertices can be colored
with six or fewer colors, since each vertex can get a different color. That takes care of the basis case(s). So
we assume that all graphs with k vertices can be 6-colored and consider a graph G with k + 1 vertices. By
Corollary 2 in Section 10.7, G has a vertex v with degree at most 5. Remove v to form the graph G′ . Since
G′ has only k vertices, we 6-color it by the inductive hypothesis. Now we can 6-color G by assigning to v

a color not used by any of its five or fewer neighbors. This completes the inductive step, and the theorem is
proved.

42. Clearly any convex polygon can be guarded by one guard, because every vertex sees all points on or inside the
polygon. This takes care of triangles and convex quadrilaterals (n = 3 and some of n = 4). It is also clear
that for a nonconvex quadrilateral, a guard placed at the vertex with the reflex angle can see all points on or
inside the polygon. This completes the proof that g(3) = g(4) = 1.

44. By Lemma 1 in Section 5.2 every hexagon has an interior diagonal, which will divide the hexagon into two
polygons, each with fewer than six sides (either two quadrilaterals or one triangle and one pentagon). By
Exercises 42 and 43, one guard suffices for each, so g(6) ≤ 2. By Exercise 45, we also know that g(6) ≥ 2.
Therefore g(6) = 2.

46. By Theorem 1 in Section 5.2, we can triangulate the polygon. We claim that it is possible to color the
vertices of the triangulated polygon using three colors so that no two adjacent vertices have the same color.
We prove this by induction. The basis step (n = 3) is trivial. Assume the inductive hypothesis that every
triangulated polygon with k vertices can be 3-colored, and consider a triangulated polygon with k+1 vertices.
By Exercise 23 in Section 5.2, one of the triangles in the triangulation has two sides that were sides of the
original polygon. If we remove those two sides and their common vertex, the result is a triangulated polygon
with k vertices. By the inductive hypothesis, we can 3-color its vertices. Now put the removed edges and
vertex back. The vertex is adjacent to only two other vertices, so we can extend the coloring to it by assigning
it the color not used by those vertices. This completes the proof of our claim. Now some color must be used
no more than n/3 times; if not, then every color would be used more than n/3 times, and that would account
for more than 3 · n/3 = n vertices. (This argument is in the spirit of the pigeonhole principle.) Say that red
is the color used least in our coloring. Then there are at most n/3 vertices colored red, and since this is an
integer, there are at most .n/3/ vertices colored red. Put guards at all these vertices. Since each triangle
must have its vertices colored with three different colors, there is a guard who can see all points on or in the
interior of each triangle in the triangulation. But this is all the points on or in the interior of the polygon,
and our proof is complete. Combining this with Exercise 45, we have proved that g(n) = .n/3/ .
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SUPPLEMENTARY EXERCISES FOR CHAPTER 10
2. A graph must be nonempty, so the subgraph can have 1, 2, or 3 vertices. If it has 1 vertex, then it has no

edges, so there is clearly just one possibility, K1 . If the subgraph has 2 vertices, then it can have no edges or
the one edge joining these two vertices; this gives 2 subgraphs. Finally, if all three vertices are in the subgraph,
then the graph can contain no edges, one edge (and we get isomorphic graphs, no matter which edge is used),
two edges (ditto), or all three edges. This gives 4 different subgraphs with 3 vertices. Therefore the answer
is 1 + 2 + 4 = 7.

4. Each vertex in the first graph has degree 4. This statement is not true for the second graph. Therefore the
graphs cannot be isomorphic. (In fact, the number of edges is different.)

6. We draw these graphs by putting the points in each part close together in clumps, and joining all vertices in
different clumps.

8. a) The statement is true, and we can prove it using the pigeonhole principle. Suppose that the graph has n

vertices. The degrees have to be numbers from 0 to n − 1, inclusive, a total of n possibilities. Now if there
is a vertex of degree n − 1, then it is adjacent to every other vertex, and hence there can be no vertex of
degree 0. Thus not all n of the possible degrees can be used. Therefore by the pigeonhole principle, some
degree must occur twice.
b) The statement is false for multigraphs. As a simple example, let the multigraph have three vertices a , b ,
and c . Let there be one edge between a and b , and two edges between b and c . Then it is easy to see that
the degrees of the vertices are 1, 3, and 2.

10. a) Every vertex adjacent to v has one or more edges joining it to v , so there are at least as many edges (which
is what deg(v) counts) as neighbors (which is what |N(v)| counts). Note that loops are not a problem here,
because each loop at v contributes 2 to deg(v) and all the loops combined contribute only 1 to |N(v)| .
b) If G is a simple graph, then there are no loops and no parallel edges (multiple edges connecting the same
pair of vertices). This means that for each v there is a one-to-one correspondence between the edges incident
to v (which is what deg(v) counts) and the vertices adjacent to v (which is what |N(v)| counts): Edge vw

corresponds to vertex w .

12. Set up a bipartite graph model for the SDR problem. The vertices in V1 are S1 , S2 , . . . , Sn , and the vertices
in V2 are the elements of S . There is an edge between Si and each element of Si . An SDR is then a complete
matching from V1 to V2 . The condition

∣∣⋃
i∈I Si

∣∣ ≥ |I| is exactly the condition in Hall’s marriage theorem.

14. Let I = {1, 2, 4, 7} . Then
∣∣⋃

i∈I Si

∣∣ = |{a, b, c}| = 3, but |I| = 4, violating the necessary (and sufficient)
condition given in Exercise 12.

16. a) Since every pair of neighbors of any given vertex are adjacent, the desired probability is 1. Another way
to see this, using the formula from Exercise 15, is that the number of triangles in K7 is C(7, 3) = 35, the
number of paths of length 2 in K7 is P (7, 3) = 210, and 6 · 35/210 = 1.
b) There are no triangles in K1,8 , so the probability is 0.
c) There are no triangles in K4,4 , so the probability is 0.
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d) There are no triangles in C7 , so the probability is 0.
e) We use the result from Exercise 15, more generally computing the clustering coefficient of Wn . There are
n triangles in Wn . Paths of length 2 can go around the cycle (n · 2 of this type), can start with an edge of
the cycle and then go to the center (n · 2 of this type), start at a vertex on the cycle, go to the center, and
come out along another spoke (n · (n− 1) of this type), or start at the center (n · 2 of this type). This gives
a total of n2 + 5n paths of length 2. Therefore the clustering coefficient is 6n/(n2 + 5n) = 6/(n + 5). For
n = 7 the numerical value is 1/2.
f) There are no triangles in Q4 , so the probability is 0.

18. a) One would expect this to be rather large, since all the actors appearing together in a movie form very large
complete subgraphs. One of the first studies of this phenomenon, reported in Duncan J. Watts and Steven
H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature 393 (1998) 440–442, using a somewhat
different definition of clustering coefficient, found a value of 0.79. Another study (M. E. J. Newman, “The
structure and function of complex networks,” SIAM Review 45 (2003) 167–256) found the clustering coefficient
of the Hollywood graph to be 0.20.
b) It reasonable to expect that the likelihood that two people who are Facebook friends of the same person
are also Facebook friends is reasonably large. That is, it is reasonable to expect that this likelihood is not close
to zero. In fact, one study found that it is approximately 0.16—about one out of six pairs of your Facebook
friends are also Facebook friends.
c) The probability that two people who have each written a paper with a third person have written a paper
with each other should not be close to zero. Two people who have written papers with the same third person
may even have been co-authors with this third person on the same paper. If not, they may work on the
same research problems and know each other (maybe they are at the same institution), because they have
a common co-author, and also may be doing active research at the same time, all making it more likely
than it would be otherwise that they have been co-authors. According to the Erdős Number Project website
(www.oakland.edu/enp), for the entire mathematics collaboration graph, this value is 0.14. Restricting this
to graph theory researchers would probably increase the value.
d) One would need some specialized knowledge of biology to have an informed opinion about this graph.
Research shows that the protein interaction graph for a human cell has a large number of nodes, each repre-
senting a different protein, and the likelihood that two proteins that each interact with a third protein interact
themselves is quite small. However, the clustering coefficient for the subgraph representing a particular func-
tional module in the cell is generally larger. One paper on the Web shows values ranging from 0.01 to 0.43,
depending on the data used.
e) One might expect this to be low, because routers that are linked to a common third router would not
need to be linked to each other for efficient communication. According to M. E. J. Newman, Networks, An
Introduction (Oxford University Press, 2010), the clustering coefficient of the Internet (at the autonomous
system level) has been found to be about 0.01. In this book the author mentions that clustering coefficients
for technology and biological networks are often small, as opposed to social networks, where these coefficients
are often reasonably large. In particular, the latter are around 0.1 or larger and the former are around 0.01
or smaller.

20. Some staring at the graph convinces us that there are no K6’s . There is one K5 , namely the clique ceghi .
There are two K4’s not contained in this K5 , which therefore are cliques: abce , and cdeg . All the K3’s not
contained in any of the cliques listed so far are also cliques. We find only aef and efg . All the edges are in
at least one of the cliques listed so far (and there are no isolated vertices), so we are done.

22. Since e is adjacent to every other vertex, the (unique) minimum dominating set is {e} .
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24. It is easy to check that the set {c, e, j, l} is dominating. We must show that no set with only three vertices is
dominating. Suppose that there were such a set. First suppose that the vertex f is to be included. Then at
least two more vertices are needed to take care of vertices a and i , unless vertex e is chosen. If vertex e is not
chosen, therefore, the dominating set must have more than three vertices, since no pair of vertices covering a

and i can cover d , for instance. On the other hand, if e is chosen, then since no single vertex covers c and l ,
again at least four vertices are required. Thus we may assume that f (and by symmetry g as well) is not in
the dominating set with only three elements. This means that we need to find three vertices from the 10-cycle
a, b, c, d, h, l, k, j, i, e, a that cover all ten of these vertices. This is impossible, since each vertex covers only
three, and 3 · 3 < 10. Therefore we conclude that there is no dominating set with only three vertices.

26. If G is the graph representing the n × n chessboard, then a minimum dominating set for G corresponds
exactly to a set of squares on which we may place the minimum number of queens to control the board.

28. This isomorphism need not hold. For the simplest counterexample, let G1 , G2 , and H1 each be the graph
consisting of the single vertex v , and let H2 be the graph consisting of the single vertex w . Then of course
G1 and H1 are isomorphic, as are G2 and H2 . But G1 ∪ G2 is a graph with one vertex, and H1 ∪H2 is a
graph with two vertices.

30. Since a 1 in the adjacency matrix indicates the presence of an edge and a 0 the absence of an edge, to obtain
the adjacency matrix for G we change each 1 in the adjacency matrix for G to a 0, and we change each 0
not on the main diagonal to a 1 (we do not want to introduce loops).

32. a) If no degree is greater than 2, then the graph must consist either of the 5-cycle or a path with no vertices
repeated. Therefore there are just two graphs.
b) Certainly every graph besides K5 that contains K4 as a subgraph will have chromatic number 4. There are
3 such graphs, since the vertex not in “the” K4 can be adjacent to one, two or three of the other four vertices.
A little further trial and error will convince one that there are no other graphs meeting these conditions, so
the answer is 3.
c) Since every proper subgraph of K5 is planar, there is only one such graph, namely K5 .

34. This follows from the transitivity of the “is isomorphic to” relation and Exercise 65 in Section 10.3. If G

is self-converse, then G is isomorphic to Gc . Since H is isomorphic to G , Hc is also isomorphic to Gc .
Stringing together these isomorphisms, we see that H is isomorphic to Hc , as desired.

36. This graph is not orientable because of the cut edge {c, d} , exactly as in Exercise 35.

38. Since we need the city to be strongly connected, we need to find an orientation of the undirected graph
representing the city’s streets, where the edges represent streets and the vertices represent intersections.

40. There are C(n, 2) = n(n − 1)/2 edges in a tournament. We must decide how to orient each one, and there
are 2 ways to do this for each edge. Therefore the answer is 2n(n−1)/2 . Note that we have not answered the
question of how many nonisomorphic tournaments there are—that is much harder.

42. We proceed by induction on n , the number of vertices in the tournament. The base case is n = 2, and the
single edge is the Hamilton path. Now let G be a tournament with n + 1 vertices. Delete one vertex, say v ,
and find (by the inductive hypothesis) a Hamilton path v1, v2, . . . , vn in the tournament that remains. Now
if (vn, v) is an edge of G , then we have the Hamilton path v1, v2, . . . , vn, v ; similarly if (v, v1) is an edge
of G , then we have the Hamilton path v, v1, v2, . . . , vn . Otherwise, there must exist a smallest i such that
(vi, v) and (v, vi+1) are edges of G . We can then splice v into the previous path to obtain the Hamilton path
v1, v2, . . . , vi, v, vi+1, . . . , vn .
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44. Because κ(G) is less than or equal to the minimum degree of the vertices, we know that the minimum degree
here is at least k . This means that the sum of the degrees is at least kn , so the number of edges, by the
handshaking theorem, is at least kn/2. Since this value must be an integer, it is at least ,kn/2- .

46. The usual notation for the minimum degree of the vertices of a graph G is δ(G).
a) κ(Cn) = λ(Cn) = δ(Cn) = 2
b) κ(Kn) = λ(Kn) = δ(Kn) = n− 1
c) κ(Kr,r) = λ(Kr,r) = δ(Kr,r) = r (See Exercise 53 in Section 10.4.)

48. We follow the hint, arbitrarily pairing the vertices of odd degree and adding an extra edge joining the vertices
in each pair. The resulting multigraph has all vertices of even degree, and so it has an Euler circuit. If we
delete the new edges, then this circuit is split into k paths. Since no two of the added edges were adjacent, each
path is nonempty. The edges and vertices in each of these paths constitute a subgraph, and these subgraphs
constitute the desired collection.

50. Dirac’s theorem guarantees that this friendship graph, in which each vertex has degree 4, will have a Hamilton
circuit.

52. a) The diameter is clearly 1, since the maximum distance between two vertices is 1. The radius is also 1,
with any vertex serving as the center.
b) The diameter is clearly 2, since vertices in the same part are not adjacent, but no pair of vertices are at a
distance greater than 2. Similarly, the radius is 2, with any vertex serving as the center.
c) Vertices at diagonally opposite corners of the cube are a distance 3 from each other, and this is the worst
case, so the diameter is 3. By symmetry we can take any vertex as the center, so it is clear that the radius is
also 3.
d) Vertices at opposite corners of the hexagon are a distance 3 from each other, and this is the worst case, so
the diameter is 3. By symmetry we can take any vertex as the center, so it is clear that the radius is also 3.
(Despite the appearances in this exercise, it is not always the case that the radius equals the diameter; for
example, K1,n has radius 1 and diameter 2.)

54. Suppose that we follow the given circuit through the multigraph, but instead of using edges more than once, we
put in a new parallel edge whenever needed. The result is an Euler circuit through a larger multigraph. If we
added new parallel edges in only m−1 or fewer places in this process, then we have modified at most 2(m−1)
vertex degrees. This means that there are at least 2m− 2(m− 1) = 2 vertices of odd degree remaining, which
is impossible in a multigraph with an Euler circuit. Therefore we must have added new edges in at least m

places, which means the circuit must have used at least m edges more than once.
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56. We assume that only simple paths are of interest here. There may be no such path, so no such algorithm is
possible. If we want an algorithm that looks for such a path and either finds one or determines that none
exists, we can proceed as follows. First we use Dijkstra’s algorithm (or some other algorithm) to find a shortest
path from a to z (the given vertices). Then for each edge e in that path (one at a time), we delete e from the
graph and find a shortest path between a and z in the graph that remains, or determine that no such path
exists (again using, say, Dijkstra’s algorithm). The second shortest path from a to z is a path of minimum
length among all the paths so found, or does not exist if no such paths are found.

58. If we want a shortest path from a to z that passes through m , then clearly we need to find a shortest path
from a to m and a shortest path from m to z , and then concatenate them. Each of these paths can be found
using Dijkstra’s algorithm.

60. a) No two vertices are not adjacent, so the independence number is 1.
b) If n is even, then we can take every other vertex as our independent set, so the independence number is
n/2. If n is odd, then this does not quite work, but clearly we can take every other vertex except for one
vertex. In this case the independence number is (n− 1)/2. We can state this answer succinctly as .n/2/ .
c) Since Qn is a bipartite graph with 2n−1 vertices in each part, the independence number is at least 2n−1

(take one of the parts as the independent set). We prove that there can be no more than this many independent
vertices by induction on n . It is trivial for n = 1. Assume the inductive hypothesis, and suppose that there
are more than 2n independent vertices in Qn+1 . Recall that Qn+1 contains two copies of Qn in it (with each
pair of corresponding points joined by an edge). By the pigeonhole principle, at least one of these Qn’s must
contain more than 2n/2 = 2n−1 independent vertices. This contradicts the inductive hypothesis. Thus Qn+1

has only 2n independent vertices, as desired.
d) The independence number is clearly the larger of m and n ; the independent set to take is the part with
this number of vertices.

62. In order to prove this statement it is sufficient to find a coloring with n− i+ 1 colors. We color the graph as
follows. Let S be an independent set with i vertices. Color each vertex of S with color n− i+ 1. Color each
of the other n− i vertices a different color.

64. a) Obviously adding edges can only help in making the graph connected, so this property is monotone
increasing. It is not monotone decreasing, because by removing edges one can disconnect a connected graph.
b) This is dual to part (a); the property is monotone decreasing. To see this, note that removing edges from
a nonconnected graph cannot possibly make it connected, while adding edges certainly can.
c) This property is neither monotone increasing nor monotone decreasing. We need to provide examples to
verify this. Consider the graph C4 , a square. It has an Euler circuit. However, if we add one edge or remove
one edge, then the resulting graph will no longer have an Euler circuit.
d) This property is monotone increasing (since the extra edges do not interfere with the Hamilton circuit
already there) but not monotone decreasing (e.g., start with a cycle).
e) This property is monotone decreasing. If a graph can be drawn in the plane, then clearly each of its
subgraphs can also be drawn in the plane (just get out your eraser!). The property is not monotone increasing;
for example, adding the missing edge to the complete graph on five vertices minus an edge changes the graph
from being planar to being nonplanar.
f) This property is neither monotone increasing nor monotone decreasing. It is easy to find examples in which
adding edges increases the chromatic number and removing them decreases it (e.g., start with C5 ).
g) As in part (f), adding edges can easily decrease the radius and removing them can easily increase it, so
this property is neither monotone increasing nor monotone decreasing. For example, C7 has radius three, but
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adding enough edges to make K7 reduces the radius to 1, and removing enough edges to disconnect the graph
renders the radius infinite.
h) As in part (g), this is neither monotone increasing nor monotone decreasing.

66. Suppose that G is a graph on n vertices randomly generated using edge probability p , and G′ is a graph
on n vertices randomly generated using edge probability p′ , where p < p′ . Recall that this means that for
G we go through all pairs of vertices and independently put an edge between them with probability p ; and
similarly for G′ . We must show that G is no more likely to have property P than G′ is. To see this, we will
imagine a different way of forming G . First we generate a random graph G′ using edge probability p′ ; then
we go through the edges that are present, and independently erase each of them with probability 1 − (p/p′).
Clearly, for an edge to end up in G , it must first get generated and then not get erased, which has probability
p′ · (p/p′) = p ; therefore this is a valid way to generate G . Now whenever G has property P , then so does
G′ , since P is monotone increasing. Thus the probability that G has property P is no greater than the
probability that G′ does; in fact it will usually be less, since once a G′ having property P is generated, it is
possible that it will lose the property as edges are erased.


