
294 Chapter 11 Trees

CHAPTER 11
Trees

SECTION 11.1 Introduction to Trees
2. a) This is a tree since it is connected and has no simple circuits.

b) This is a tree since it is connected and has no simple circuits.
c) This is not a tree, since it is not connected.
d) This is a tree since it is connected and has no simple circuits.
e) This is not a tree, since it has a simple circuit.
f) This is a tree since it is connected and has no simple circuits.

4. a) Vertex a is the root, since it is drawn at the top.
b) The internal vertices are the vertices with children, namely a , b , d , e , g , h , i , and o .
c) The leaves are the vertices without children, namely c , f , j , k , l , m , n , p , q , r , and s .
d) The children of j are the vertices adjacent to j and below j . There are no such vertices, so there are no
children.
e) The parent of h is the vertex adjacent to h and above h , namely d .
f) Vertex o has only one sibling, namely p , which is the other child of o’s parent, i .
g) The ancestors of m are all the vertices on the unique simple path from m back to the root, namely g , b ,
and a .
h) The descendants of b are all the vertices that have b as an ancestor, namely e , f , g , j , k , l , and m .

6. This is not a full m-ary tree for any m . It is an m-ary tree for all m ≥ 3, since each vertex has at most 3
children, but since some vertices have 3 children, while others have 1 or 2, it is not full for any m .

8. We can easily determine the levels from the drawing. The root a is at level 0. The vertices in the row below
a are at level 1, namely b , c , and d . The vertices below that, namely e through i (in alphabetical order),
are at level 2. Similarly j through p are at level 3, and q , r , and s are at level 4.

10. We describe the answers, rather than actually drawing pictures.
a) The subtree rooted at a is the entire tree, since a is the root.
b) The subtree rooted at c consists of just the vertex c .
c) The subtree rooted at e consists of e , j , and k , and the edges ej and ek .

12. We find the answer by carefully enumerating these trees, i.e., drawing a full set of nonisomorphic trees. One
way to organize this work so as to avoid leaving any trees out or counting the same tree (up to isomorphism)
more than once is to list the trees by the length of their longest simple path (or longest simple path from the
root in the case of rooted trees).
a) There are two trees with four vertices, namely K1,3 and the simple path of length 3. See the first two
trees below.

Section 11.1 Introduction to Trees 295

b) The longest path from the root can have length 1, 2 or 3. There is only one tree with longest path of
length 1 (the other three vertices are at level 1), and only one with longest path of length 3. If the longest
path has length 2, then the fourth vertex (after using three vertices to draw this path) can be “attached”
to either the root or the vertex at level 1, giving us two nonisomorphic trees. Thus there are a total of four
nonisomorphic rooted trees on 4 vertices, as shown below.

14. There are two things to prove. First suppose that T is a tree. By definition it is connected, so we need to
show that the deletion of any of its edges produces a graph that is not connected. Let {x, y} be an edge of T ,
and note that x "= y . Now T with {x, y} deleted has no path from x to y , since there was only one simple
path from x to y in T , and the edge itself was it. (We use Theorem 1 here, as well as the fact that if there
is a path from a vertex u to another vertex v , then there is a simple path from u to v by Theorem 1 in
Section 10.4.) Therefore the graph with {x, y} deleted is not connected.

Conversely, suppose that a simple connected graph T satisfies the condition that the removal of any edge
will disconnect it. We must show that T is a tree. If not, then T has a simple circuit, say x1, x2, . . . , xr, x1 .
If we delete edge {xr, x1} from T , then the graph will remain connected, since wherever the deleted edge
was used in forming paths between vertices we can instead use the rest of the circuit: x1, x2, . . . , xr or its
reverse, depending on which direction we need to go. This is a contradiction to the condition. Therefore our
assumption was wrong, and T is a tree.

16. If both m and n are at least 2, then clearly there is a simple circuit of length 4 in Km,n . On the other hand,
Km,1 is clearly a tree (as is K1,n). Thus we conclude that Km,n is a tree if and only if m = 1 or n = 1.

18. By Theorem 4(ii), the answer is mi + 1 = 5 · 100 + 1 = 501.

20. By Theorem 4(i), the answer is [(m− 1)n + 1]/m = (2 · 100 + 1)/3 = 67.

22. The model here is a full 5-ary tree. We are told that there are 10,000 internal vertices (these represent
the people who send out the letter). By Theorem 4(ii) we see that n = mi + 1 = 5 · 10000 + 1 = 50,001.
Everyone but the root receives the letter, so we conclude that 50,000 people receive the letter. There are
50001 − 10000 = 40,001 leaves in the tree, so that is the number of people who receive the letter but do not
send it out.

24. Such a tree does exist. By Theorem 4(iii), we note that such a tree must have i = 75/(m−1) internal vertices.
This has to be a whole number, so m−1 must divide 75. This is possible, for example, if m = 6, so let us try
it. A complete 6-ary tree (see preamble to Exercise 27) of height 2 would have 36 leaves. We therefore need
to add 40 leaves. This can be accomplished by changing 8 vertices at level 2 to internal vertices; each such
change adds 5 leaves to the tree (6 new leaves at level 3, less the one leaf at level 5 that has been changed
to an internal vertex). We will not show a picture of this tree, but just summarize its appearance. The root
has 6 children, each of which has 6 children, giving 36 vertices at level 2. Of these, 28 are leaves, and each
of the remaining 8 vertices at level 2 has 6 children, living at level 3, for a total of 48 leaves at level 3. The
total number of leaves is therefore 28 + 48 = 76, as desired.

26. By Theorem 4(iii), we note that such a tree must have i = 80/(m − 1) internal vertices. This has to be a
whole number, so m− 1 must divide 80. By enumerating the divisors of 80, we see that m can equal 2, 3,
5, 6, 9, 11, 17, 21, 41, or 81. Some of these are incompatible with the height requirements, however.

296 Chapter 11 Trees

a) Since the height is 4, we cannot have m = 2, since that will give us at most 1+2+4+8+16 = 31 vertices.
Any of the larger values of m shown above, up to 21, allows us to form a tree with 81 leaves and height 4.
In each case we could get m4 leaves if we made all vertices at levels smaller than 4 internal; and we can get
as few as 4(m− 1) + 1 leaves by putting only one internal vertex at each such level. We can get 81 leaves in
the former case by taking m = 3; on the other hand, if m > 21, then we would be forced to have more than
81 leaves. Therefore the bounds on m are 3 ≤ m ≤ 21 (with m also restricted to being in the list above).
b) If T must be balanced, then the smallest possible number of leaves is obtained when level 3 has only one
internal vertex and m3 − 1 leaves, giving a total of m3 − 1 +m leaves in T . Again, the maximum number of
leaves will be m4 . With these restriction, we see that m = 5 is already too big, since this would require at
least 53 − 1 + 5 = 129 leaves. Therefore the only possibility is m = 3.

28. This tree has 1 vertex at level 0, m vertices at level 1, m2 vertices at level 2, . . . , mh vertices at level h .
Therefore it has

1 + m + m2 + · · · + mh =
mh+1 − 1
m− 1

vertices in all. The vertices at level h are the only leaves, so it has mh leaves.

30. (We assume m ≥ 2.) First we delete all the vertices at level h ; there is at least one such vertex, and they are
all leaves. The result must be a complete m-ary tree of height h − 1. By the result of Exercise 28, this tree
has mh−1 leaves. In the original tree, then, there are more than this many leaves, since every internal vertex
at level h− 1 (which counts as a leaf in our reduced tree) spawns at least two leaves at level h .

32. The root of the tree represents the entire book. The vertices at level 1 represent the chapters—each chapter
is a chapter of (read “child of”) the book. The vertices at level 2 represent the sections (the parent of each
such vertex is the chapter in which the section resides). Similarly the vertices at level 3 are the subsections.

34. a) The parent of a vertex is that vertex’s boss.
b) The child of a vertex is an immediate subordinate of that vertex (one he or she directly supervises).
c) The sibling of a vertex is a coworker with the same boss.
d) The ancestors of a vertex are that vertex’s boss, his/her boss’s boss, etc.
e) The descendants of a vertex are all the people that that vertex ultimately supervises (directly or indirectly).
f) The level of a vertex is the number of levels away from the top of the organization that vertex is.
g) The height of the tree is the depth of the structure.

36. a) We simply add one more row to the tree in Figure 12, obtaining the following tree.

b) During the first step we use the bottom row of the network to add x1 + x2 , x3 + x4 , x5 + x6 , . . . ,
x15 + x16 . During the second step we use the next row up to add the results of the computations from the
first step, namely (x1 + x2) + (x3 + x4), (x5 + x6) + (x7 + x8), . . . , (x13 + x14) + (x15 + x16). The third
step uses the sums obtained in the second, and the two processors in the second row of the tree perform
(x1 + x2 + x3 + x4) + (x5 + x6 + x7 + x8) and (x9 + x10 + x11 + x12) + (x13 + x14 + x15 + x16). Finally, during
the fourth step the root processor adds these two quantities to obtain the desired sum.

Section 11.2 Applications of Trees 297

38. For n = 3, there is only one tree to consider, the one that is a simple path of length 2. There are 3 choices
for the label to put in the middle of the path, and once that choice is made, the labeled tree is determined up
to isomorphism. Therefore there are 3 labeled trees with 3 vertices.

For n = 4, there are two structures the tree might have. If it is a simple path with length 3, then there
are 12 different labelings; this follows from the fact that there are P (4, 4) = 4! = 24 permutations of the
integers from 1 to 4, but a permutation and its reverse lead to the same labeled tree. If the tree structure is
K1,3 , then the only choice is which label to put on the vertex that is adjacent to the other three, so there are
4 such trees. Thus in all there are 16 labeled trees with 4 vertices.

In fact it is a theorem that the number of labeled trees with n vertices is nn−2 for all n ≥ 2.

40. The eccentricity of vertex e is 3, and it is the only vertex with eccentricity this small. Therefore e is the only
center.

42. Since the height of a tree is the maximum distance from the root to another vertex, this is clear from the
definition of center.

44. We choose a root and color it red. Then we color all the vertices at odd levels blue and all the vertices at even
levels red.

46. The number of vertices in the tree Tn satisfies the recurrence relation vn = vn−1 + vn−2 + 1 (the “+1” is
for the root), with v1 = v2 = 1. Thus the sequence begins 1, 1, 3, 5, 9, 15, 25, It is easy to prove
by induction that vn = 2fn − 1, where fn is the nth Fibonacci number. The number of leaves satisfies the
recurrence relation ln = ln−1 + ln−2 , with l1 = l2 = 1, so ln = fn . Since in = vn − ln , we have in = fn − 1.
Finally, it is clear that the height of the tree Tn is one more than the height of the tree Tn−1 for n ≥ 3, with
the height of T2 being 0. Therefore the height of Tn is n − 2 for all n ≥ 2 (and of course the height of T1

is 0).

48. Let T be a tree with n vertices, having height h . If there are any internal vertices in T at levels less than
h− 1 that do not have two children, take a leaf at level h and move it to be such a missing child. This only
lowers the average depth of a leaf in this tree, and since we are trying to prove a lower bound on the average
depth, it suffices to prove the bound for the resulting tree. Repeat this process until there are no more internal
vertices of this type. As a result, all the leaves are now at levels h − 1 and h . Now delete all vertices at
level h . This changes the number of vertices by at most (one more than) a factor of two and so has no effect
on a big-Omega estimate (it changes log n by at most 1). Now the tree is complete, and by Exercise 28 it
has 2h−1 leaves, all at depth h− 1, where now n = 2h − 1. The desired estimate follows.

SECTION 11.2 Applications of Trees
2. We make the first word the root. Since the second word follows the first in alphabetical order, we make it

the right child of the root. Similarly the third word is the left child of the root. To place the next word,
ornithology , we move right from the root, since it follows the root in alphabetical order, and then move left
from phrenology , since it comes before that word. The rest of the tree is built in a similar manner.

298 Chapter 11 Trees

4. To find palmistry , which is not in the tree, we must compare it to the root (oenology), then the right child of
the root (phrenology), and then the left child of that vertex (ornithology). At this point it is known that the
word is not in the tree, since ornithology has no right child. Three comparisons were used. The remaining
parts are similar, and the answer is 3 in each case.

6. Decision tree theory tells us that at least %log3 4& = 2 weighings are needed. In fact we can easily achieve this
result. We first compare the first two coins. If one is lighter, it is the counterfeit. If they balance, then we
compare the other two coins, and the lighter one of these is the counterfeit.

8. Decision tree theory applied naively says that at least %log3 8& = 2 weighings are needed, but in fact at least
3 weighings are needed. To see this, consider what the first weighing might accomplish. We can put one, two,
or three coins in each pan for the first weighing (no other arrangement will yield any information at all). If we
put one or two coins in each pan, and if the scale balances, then we only know that the counterfeit is among
the six or four remaining coins. If we put three coins in each pan, and if the scale does not balance, then
essentially all we know is that the counterfeit coin is among the six coins involved in the weighing. In every
case we have narrowed the search to more than three coins, so one more weighing cannot find the counterfeit
(there being only three possible outcomes of one more weighing).

Next we must show how to solve the problem with three weighings. Put two coins in each pan. If the
scale balances, then the search is reduced to the other four coins. If the scale does not balance, then the
counterfeit is among the four coins on the scale. In either case, we then apply the solution to Exercise 7 to
find the counterfeit with two more weighings.

10. There are nine possible outcomes here: either there is no counterfeit, or else we need to name a coin (4
choices) and a type (lighter or heavier). Decision tree theory holds out hope that perhaps only two weighings
are needed, but we claim that we cannot get by with only two. Suppose the first weighing involves two coins
per pan. If the pans balance, then we know that there is no counterfeit, and subsequent weighings add no
information. Therefore we have only six possible decisions (three for each of the other two outcomes of the
first weighing) to differentiate among the other eight possible outcomes, and this is impossible. Therefore
assume without loss of generality that the first weighing pits coin A against coin B . If the scale balances,
then we know that the counterfeit is among the other two coins, if there is one. Now we must separate coins
C and D on the next weighing if this weighing is to be decisive, so this weighing is equivalent to pitting C

against D . If the scale does not balance, then we have not solved the problem.

We give a solution using three weighings. Weigh coin A against coin B . If they do not balance, then
without loss of generality assume that coin A is lighter (the opposite result is handled similarly). Then weigh
coin A against coin C . If they balance, then we know that coin B is the counterfeit and is heavy. If they do
not balance, then we know that A is the counterfeit and is light. The remaining case is that in which coins
A and B balance. At this point we compare C and D . If they balance, then we conclude that there is no
counterfeit. If they do not balance, then one more weighing of, say, the lighter of these against A , solves the
problem just as in the case in which A and B did not balance.

12. By Theorem 1 in this section, at least %log 5!& comparisons are needed. Since log2 120 ≈ 6.9, at least seven
comparisons are required. We can accomplish the sorting with seven comparisons as follows. Call the elements
a , b , c , d , and e . First compare a and b ; and compare c and d . Without loss of generality, let us assume
that a < b and c < d . (If not, then relabel the elements after these comparisons.) Next we compare b and d

(this is our third comparison), and again relabel all four of these elements if necessary to have b < d . So at
this point we have a < b < d and c < d after three comparisons. We insert e into its proper position among
a , b , and d with two more comparisons using binary search, i.e., by comparing e first to b and then to either
a or d . Thus we have made five comparisons and obtained a linear ordering among a , b , d , and e , as well as

Section 11.2 Applications of Trees 299

knowing one more piece of information about the location of c , namely either that it is less than the largest
among a , b , d , and e , or that it is less than the second largest. (Drawing a diagram helps here.) In any case,
it then suffices to insert c into its correct position among the three smallest members of a , b , d , and e , which
requires two more comparisons (binary search), bringing the total to the desired seven.

14. The first step builds the following tree.

This identifies 17 as the largest element, so we replace the leaf 17 by −∞ in the tree and recalculate the
winner in the path from the leaf where 17 used to be up to the root. The result is as shown here.

Now we see that 14 is the second largest element, so we repeat the process: replace the leaf 14 by −∞ and
recalculate. This gives us the following tree.

Thus we see that 13 is the third largest element, so we repeat the process: replace the leaf 13 by −∞ and
recalculate. The process continues in this manner. The final tree will look like this, as we determine that 1 is
the eighth largest element.

300 Chapter 11 Trees

16. Each comparison eliminates one contender, and n − 1 contenders have to be eliminated, so there are n − 1
comparisons to determine the largest element.

18. Following the hint we insert enough −∞ values to make n a power of 2. This at most doubles n and so will
not affect our final answer in big-Theta notation. By Exercise 16 we can build the initial tree using n − 1
comparisons. By Exercise 17 for each round after the first it takes k = log n comparisons to identify the next
largest element. There are n−1 additional rounds, so the total amount of work in these rounds is (n−1) log n .
Thus the total number of comparisons is n− 1 + (n− 1) log n , which is Θ(n log n).

20. The constructions are straightforward.

22. a) The first three bits decode as t . The next bit decodes as e . The next four bits decode as s . The last three
bits decode as t . Thus the word is test . The remaining parts are similar, so we give just the answers.
b) beer c) sex d) tax

24. We follow Algorithm 2. Since F and C are the symbols of least weight, they are combined into a subtree,
which we will call T1 for discussion purposes, of weight 0.07 + 0.05 = 0.12, with the larger weight symbol, F,
on the left. Now the two trees of smallest weight are the single symbols A and G, and so we get a tree T2

with left subtree A and right subtree G, of weight 0.18. The next step is to combine D and T1 into a subtree
T3 of weight 0.27. Then B and T2 form T4 of weight 0.43; and E and T3 form T5 of weight 0.57.The final
step is to combine T5 and T4 . The result is as shown.

We see by looking at the tree that A is encoded by 110, B by 10, C by 0111, D by 010, E by 00,
F by 0110, and G by 111. To compute the average number of bits required to encode a character, we
multiply the number of bits for each letter by the weight of that latter and add. Since A takes 3 bits and
has weight 0.10, it contributes 0.30 to the sum. Similarly B contributes 2 · 0.25 = 0.50. In all we get
3 · 0.10 + 2 · 0.25 + 4 · 0.05 + 3 · 0.15 + 2 · 0.30 + 4 · 0.07 + 3 · 0.08 = 2.57. Thus on the average, 2.57 bits are
needed per character. Note that this is an appropriately weighted average, weighted by the frequencies with
which the letters occur.

26. a) First we combine e and d into a tree T1 with weight 0.2. Then using the rule we choose T1 and, say, c to
combine into a tree T2 with weight 0.4. Then again using the rule we must combine T2 and b into T3 with
weight 0.6, and finally T3 and a. This gives codes a:1, b:01, c:001, d:0001, e:0000. For the other method
we first combine d and e to form a tree T1 with weight 0.2. Next we combine b and c (the trees with the

Section 11.2 Applications of Trees 301

smallest number of vertices) into a tree T2 with weight 0.4. Next we are forced to combine a with T1 to form
T3 with weight 0.6, and then T3 and T2 . This gives the codes a:00, b:10, c:11, d:010, e:011.
b) The average for the first method is 1 · 0.4 + 2 · 0.2 + 3 · 0.2 + 4 · 0.1 + 4 · 0.1 = 2.2, and the average for
the second method is 2 · 0.4 + 2 · 0.2 + 2 · 0.2 + 3 · 0.1 + 3 · 0.1 = 2.2. We knew ahead of time, of course, that
these would turn out to be equal, since the Huffman algorithm minimizes the expected number of bits. For
variance we use the formula V (X) = E(X2) −E(X)2 . For the first method, the expectation of the square of
the number of bits is 12 · 0.4 + 22 · 0.2 + 32 · 0.2 + 42 · 0.1 + 42 · 0.1 = 6.2, and for the second method it is
22 ·0.4+22 ·0.2+22 ·0.2+32 ·0.1+32 ·0.1 = 5.0. Therefore the variance for the first method is 6.2−2.22 = 1.36,
and for the second method it is 5.0− 2.22 = 0.16. The second method has a smaller variance in this example.

28. The pseudocode is identical to Algorithm 2 with the following changes. First, the value of m needs to be
specified, presumably as part of the input. Before the while loop starts, we choose the k = ((N−1) mod (m−
1)) + 1 vertices with smallest weights and replace them by a single tree with a new root, whose children from
left to right are these k vertices in order by weight (from greatest to smallest), with labels 0 through k − 1
on the edges to these children, and with weight the sum of the weights of these k vertices. Within the loop,
rather than replacing the two trees of smallest weight, we find the m trees of smallest weight, delete them
from the forest and form a new tree with a new root, whose children from left to right are the roots of these
m trees in order by weight (from greatest to smallest), with labels 0 through m − 1 on the edges to these
children, and with weight the sum of the weights of these m former trees.

30. a) It is easy to construct this tree using the Huffman coding algorithm, as in previous exercises. We get A:0,
B:10, C:11.
b) The frequencies of the new symbols are AA:0.6400, AB:0.1520, AC:0.0080, BA:0.1520, BB:0.0361,
BC:0.0019, CA:0.0080, CB:0.0019, CC:0.0001. We form the tree by the algorithm and obtain this code:
AA:0, AB:11, AC:10111, BA:100, BB:1010, BC:1011011, CA:101100, CB:10110100, CC:10110101.
c) The average number of bits for part (a) is 1 · 0.80 + 2 · 0.19 + 2 · 0.01 = 1.2000 per symbol. The average
number of bits for part (b) is 1 ·0.6400+2 ·0.1520+5 ·0.0080+3 ·0.1520+4 ·0.0361+7 ·0.0019+6 ·0.0080+8 ·
0.0019 + 8 · 0.0001 = 1.6617 for sending two symbols, which is therefore 0.83085 bits per symbol. The second
method is more efficient.

32. We prove this by induction on the number of symbols. If there are just two symbols, then there is nothing
to prove, so assume the inductive hypothesis that Huffman codes are optimal for k symbols, and consider a
situation in which there are k+1 symbols. First note that since the tree is full, the leaves at the bottom-most
level come in pairs. Let a and b be two symbols of smallest frequencies, pa and pb . If in some binary prefix
code they are not paired together at the bottom-most level, then we can obtain a code that is at least as
efficient by interchanging the symbols on some of the leaves to make a and b siblings at the bottom-most
level (since moving a more frequently occurring symbol closer to the root can only help). Therefore we can
assume that a and b are siblings in every most-efficient tree. Now suppose we consider them to be one new
symbol c , occurring with frequency equal to the sum of the frequencies of a and b , and apply the inductive
hypothesis to obtain via the Huffman algorithm an optimal binary prefix code Hk on k symbols. Note that
this is equivalent to applying the Huffman algorithm to the k + 1 symbols, and obtaining a code we will call
Hk+1 . We must show that Hk+1 is optimal for the k + 1 symbols. Note that the average numbers of bits
required to encode a symbol in Hk and in Hk+1 are the same except for the symbols a , b , and c , and the
difference is pa + pb (since one extra bit is needed for a and b , as opposed to c , and all other code words
are the same). If Hk+1 is not optimal, let H ′

k+1 be a better code (with smaller average number of bits per
symbol). By the observation above we can assume that a and b are siblings at the bottom-most level in
H ′

k+1 . Then the code H ′
k for k symbols obtained by replacing a and b with their parent (and deleting the

302 Chapter 11 Trees

last bit) has average number of bits equal to the average for H ′
k+1 minus pa + pb , and that contradicts the

inductive hypothesis that Hk was optimal.

34. The first player has six choices, as shown below. In five of these cases, the analysis from there on down has
already been done, either in Figure 9 of the text or in the solution to Exercise 33, so we do not show the
subtree in full but only indicate the value. Note that if the cited reference was to a square vertex rather than
a circle vertex, then the outcome is reversed. From the fifth vertex at the second level there are four choices,
as shown, and again they have all been analyzed previously. The upshot is that since all the vertices on the
second level are wins for the second player (value −1), the value of the root is also −1, and the second player
can always win this game.

36. The game tree is too large to draw in its entirety, so we simplify the analysis by noting that a player will never
want to move to a situation with two piles, one of which has one stone, nor to a single pile with more than
one stone. If we omit these suicide moves, the game tree looks like this.

Note that a vertex with no children except suicide moves is a win for whoever is not moving at that point.
The first player wins this game by moving to the position 2 2.

38. a) First player wins by moving in the center at this point.This blocks second player’s threat and creates two
threats, only one of which can the second player block.
b) This game will end in a draw with optimal play. The first player must first block the second player’s threat,
and then as long as the second player makes his third and fourth moves in the first and third columns, the
first player cannot win.
c) The first player can win by moving in the right-most square of the middle row. This creates two threats,
only one of which can the second player block.
d) As long as neither player does anything stupid (fail to block a threat), this game must end in a draw, since
the next three moves are forced and then no file can contain three of the same symbol.

40. If the smaller pile contains just one stone, then the first player wins by removing all the stones in the other
pile. Otherwise the smaller pile contains at least two stones and the larger pile contains more stones than
that, so the first player can remove enough stones from the larger pile to make two piles with the same number
of stones, where this number is at least 2. By the result of Exercise 39, the resulting game is a win for the
second player when played optimally, and our first player is now the second player in the resulting game.

Section 11.3 Tree Traversal 303

42. We need to record how many moves are possible from various positions. If the game currently has piles with
stones in them, we can take from one to all of the stones in any pile. That means the number of possible
moves is the sum of the pile sizes. However, by symmetry, moves from piles of the same size are equivalent,
so the actual number of moves is the sum of the distinct pile sizes. The one exception is that a position with
just one pile has one fewer move, since we cannot take all the stones.
a) From 5 4 the possible moves are to 5 3, 5 2, 5 1, 4 4, 4 3, 4 2, 4 1, 5, and 4, so there are nine children.
A similar analysis shows that the number of children of these children are 8, 7, 6, 4, 7, 6, 5, 4, and 3,
respectively, so the number of grandchildren is the sum of these nine numbers, namely 50.
b) There are three children with just two piles left, and these lead to 18 grandchildren. There are six children
with three piles left, and these lead to 37 grandchildren. So in all there are nine children and 55 grandchildren.
c) A similar analysis shows that there are 10 children and 70 grandchildren.
d) A similar analysis shows that there are 10 children and 82 grandchildren.

44. This recursive procedure finds the value of a game. It needs to keep track of which player is currently moving,
so the value of the variable player will be either “First” or “Second.” The variable P is a position of the
game (for example, the numbers of stones in the piles for nim).

procedure value(P, player)
if P is a leaf then return payoff to first player
else if player = First then

{compute maximum of values of children}
v := −∞
for each legal move m for First

{compute value of game at resulting position}
Q := (P followed by move m)
v′ := value(Q,Second)
if v′ > v then v := v′

return v
else { player = Second }

{compute minimum of values of children}
v := ∞
for each legal move m for Second

{compute value of game at resulting position}
Q := (P followed by move m)
v′ := value(Q,First)
if v′ < v then v := v′

return v

SECTION 11.3 Tree Traversal
2. See the comments for the solution to Exercise 1. The order is 0 < 1 < 1.1 < 1.1.1 < 1.1.1.1 < 1.1.1.2 <

1.1.2 < 1.2 < 2.

304 Chapter 11 Trees

4. a) The vertex is at level 5; it is clear that an address (other than 0) of length l gives a vertex at level l .
b) We obtain the address of the parent by deleting the last number in the address of the vertex. Therefore
the parent is 3.4.5.2.
c) Since v is the fourth child, it has at least three siblings.
d) We know that v’s parent must have at least 1 sibling, its grandparent must have at least 4, its great-
grandparent at least 3, and its great-great-grandparent at least 2. Adding to this count the fact that v has
5 ancestors and 3 siblings (and not forgetting to count v itself), we obtain a total of 19 vertices in the tree.
e) The other addresses are 0 together with all prefixes of v and the all the addresses that can be obtained
from v or prefixes of v by making the last number smaller. Thus we have 0, 1, 2, 3, 3.1, 3.2, 3.3, 3.4,
3.4.1, 3.4.2, 3.4.3, 3.4.4, 3.4.5, 3.4.5.1, 3.4.5.2, 3.4.5.2.1, 3.4.5.2.2, and 3.4.5.2.3.

6. a) The following tree has these addresses for its leaves. We construct it by starting from the beginning of the
list and drawing the parts of the tree that are made necessary by the given leaves. First of course there must
be a root. Then since the first leaf is labeled 1.1.1, there must be a first child of the root, a first child of this
child, and a first child of this latter child, which is then a leaf. Next there must be the second child of the
root’s first grandchild (1.1.2), and then a second child of the first child of the root (1.2). We continue in this
manner until the entire tree is drawn.

b) If there is such a tree, then the address 2.4.1 must occur since the address 2.4.2 does (the parent of
2.4.2.1). The vertex with that address must either be a leaf or have a descendant that is a leaf. The address
of any such leaf must begin 2.4.1. Since no such address is in the list, we conclude that the answer to the
question is no.
c) No such tree is possible, since the vertex with address 1.2.2 is not a leaf (it has a child 1.2.2.1 in the list).

8. See the comments in the solution to Exercise 7 for the procedure. The only difference here is that some vertices
have more than two children: after listing such a vertex, we list the vertices of its subtrees, in preorder, from
left to right. The answer is a, b, d, e, i, j,m, n, o, c, f, g, h, k, l, p .

10. The left subtree of the root comes first, namely the tree rooted at b . There again the left subtree comes first,
so the list begins with d . After that comes b , the root of this subtree, and then the right subtree of b , namely
(in order) f , e , and g . Then comes the root of the entire tree and finally its right child. Thus the answer is
d, b, f, e, g, a, c .

12. This is similar to Exercise 11. The answer is k, e, l,m, b, f, r, n, s, g, a, c, o, h, d, i, p, j, q .

14. The procedure is the same as in Exercise 13, except that some vertices have more than two children here:
before listing such a vertex, we list the vertices of its subtrees, in postorder, from left to right. The answer is
d, i,m, n, o, j, e, b, f, g, k, p, l, h, c, a .

16. a) We build the tree from the top down while analyzing the expression by identifying the outermost operation
at each stage. The outermost operation in this expression is the final subtraction. Therefore the tree has −
at its root, with the two operands as the subtrees at the root. The right operand is clearly 5, so the right
child of the root is 5. The left operand is the result of a multiplication, so the left subtree has ∗ as its root.
We continue recursively in this way until the entire tree is constructed.

Section 11.3 Tree Traversal 305

b) We can read off the answer from the picture we have just drawn simply by listing the vertices of the tree
in preorder: First list the root, then the left subtree in preorder, then the right subtree in preorder. Therefore
the answer is −∗↑+x 2 3− y+ 3x 5.
c) We can read off the answer from the picture we have just drawn simply by listing the vertices of the tree
in postorder: x 2 + 3 ↑ y 3x+−∗ 5− .
d) The infix expression is just the given expression, fully parenthesized: ((((x + 2) ↑ 3) ∗ (y − (3 + x))) − 5).
This corresponds to traversing the tree in inorder, putting in a left parenthesis whenever we go down to a left
child and putting in a right parenthesis whenever we come up from a right child.

18. a) This exercise is similar to the previous few exercises. The only difference is that some portions of the tree
represent the unary operation of negation (¬). In the first tree, for example, the left subtree represents the
expression ¬(p ∧ q), so the root is the negation symbol, and the only child of this root is the tree for the
expression p ∧ q .

Since this exercise is similar to previous exercises, we will not go into the details of obtaining the different
expressions. The only difference is that negation (¬) is a unary operator; we show it preceding its operand in
infix notation, even though it would follow it in an inorder traversal of the expression tree.
b) ↔¬∧ p q ∨¬ p¬ q and ∨∧¬ p↔ q ¬ p¬ q

c) p q ∧¬ p¬ q ¬∨↔ and p¬ q p¬↔∧ q ¬∨
d) ((¬(p ∧ q)) ↔ ((¬p) ∨ (¬q))) and (((¬p) ∧ (q ↔ (¬p))) ∨ (¬q))

20. This requires fairly careful counting. Let us work from the outside in. There are four symbols that can be the
outermost operation: the first ¬ , the ∧ , the ↔ , and the ∨ . Let us first consider the cases in which the first
¬ is the outermost operation, necessarily applied, then, to the rest of the expression. Then there are three
possible choices for the outermost operation of the rest: the ∧ , the ↔ , and the ∨ . Let us assume first that
it is the ∧ . Then there are two choices for the outermost operation of the rest of the expression: the ↔ and
the ∨ . If it is the ↔ , then there are two ways to parenthesize the rest—depending on whether the second ¬
applies to the disjunction or only to the p . Backing up, we next consider the case in which the ∨ is outermost
operation among the last seven symbols, rather than the ↔ . In this case there are no further choices. We
then back up again and assume that the ↔ , rather than the ∧ , is the second outermost operation. In this
case there are two possibilities for completing the parenthesization (involving the second ¬). If the ∨ is the
second outermost operation, then again there are two possibilities, depending on whether the ∧ or the ↔ is
applied first. Thus in the case in which the outermost operation is the first ¬ , we have counted 7 ways to
parenthesize the expression:

(¬(p ∧ (q ↔ (¬(p ∨ (¬q))))))

(¬(p ∧ (q ↔ ((¬p) ∨ (¬q)))))

(¬(p ∧ ((q ↔ (¬p)) ∨ (¬q))))

306 Chapter 11 Trees

(¬((p ∧ q) ↔ (¬(p ∨ (¬q)))))

(¬((p ∧ q) ↔ ((¬p) ∨ (¬q))))

(¬((p ∧ (q ↔ (¬p))) ∨ (¬q)))

(¬(((p ∧ q) ↔ (¬p)) ∨ (¬q)))

The other three cases are similar, giving us 3 possibilities if the ∧ is the outermost operation, 4 if the ↔ is,
and 5 if the ∨ is. Therefore the answer is 7 + 3 + 4 + 5 = 19.

22. We work from the beginning of the expression. In part (a) the root of the tree is necessarily the first +. We
then use up as much of the rest of the expression as needed to construct the left subtree of the root. The
root of this left subtree is the ∗ , and its left subtree is as much of the rest of the expression as is needed. We
continue in this way, making our way to the subtree consisting of root − and children 5 and 3. Then the 2
must be the right child of the second +, the 1 must be the right child of the ∗ , and the 4 must be the right
child of the root. The result is shown here.

In infix form we have ((((5 − 3) + 2) ∗ 1) + 4). The other two trees are constructed in a similar manner.

The infix expressions are therefore ((2 + 3) ↑ (5 − 1)) and ((9/3) ∗ ((2 ∗ 4) + (7 − 6))), respectively.

24. We exhibit the answers by showing with parentheses the operation that is applied next, working from left to
right (it always involves the first occurrence of an operator symbol).
a) 5 (2 1−)− 3 1 4 + + ∗ = (5 1−) 3 1 4 + + ∗ = 4 3 (1 4 +) + ∗ = 4 (3 5 +) ∗ = (4 8 ∗) = 32
b) (9 3 /) 5 + 7 2−∗ = (3 5 +) 7 2−∗ = 8 (7 2−) ∗ = (8 5 ∗) = 40
c) (3 2 ∗) 2 ↑ 5 3− 8 4 / ∗− = (6 2 ↑) 5 3− 8 4 / ∗− = 36 (5 3−) 8 4 / ∗− = 36 2 (8 4 /) ∗− = 36 (2 2 ∗)− =
(36 4−) = 32

26. We prove this by induction on the length of the list. If the list has just one element, then the statement is
trivially true. For the inductive step, consider the beginning of the list. There we find a sequence of vertices,
starting with the root and ending with the first leaf (we can recognize the first leaf as the first vertex with no
children), each vertex in the sequence being the first child of its predecessor in the list. Now remove this leaf,
and decrease the child count of its parent by 1. The result is the preorder and child counts of a tree with one
fewer vertex. By the inductive hypothesis we can uniquely determine this smaller tree. Then we can uniquely
determine where the deleted vertex goes, since it is the first child of its parent (whom we know).

28. It is routine to see that the list is in alphabetical order in each case. In the first tree, vertex b has two children,
whereas in the second, vertex b has three children, so the statement in Exercise 26 is not contradicted.

Section 11.4 Spanning Trees 307

30. a) This is not well-formed by the result in Exercise 31.
b) This is not well-formed by the result in Exercise 31.
c) This is not well-formed by the result in Exercise 31.
d) This is well-formed. Each of the two subexpressions ◦xx is well-formed. Therefore the subexpression
+◦xx◦xx is well-formed; call it A . Thus the entire expression is ×Ax , so it is well-formed.

32. The definition is word-for-word the same as that given for prefix expressions, except that “postfix” is substi-
tuted for “prefix” throughout, and ∗XY is replaced by XY ∗ .

34. We replace the inductive step (ii) in the definition with the statement that if X1 , X2 , . . . , Xn are well-formed
formulae and ∗ is an n-ary operator, then ∗X1X2 . . . Xn is a well-formed formula.

SECTION 11.4 Spanning Trees
2. Since the edge {a, b} is part of a simple circuit, we can remove it. Then since the edge {b, c} is part of a

simple circuit that still remains, we can remove it. At this point there are no more simple circuits, so we have
a spanning tree. There are many other possible answers, corresponding to different choices of edges to remove.

4. We can remove these edges to produce a spanning tree (see comments for Exercise 2): {a, i} , {b, i} , {b, j} ,
{c, d} , {c, j} , {d, e} , {e, j} , {f, i} , {f, j} , and {g, i} .

6. There are many, many possible answers. One set of choices is to remove edges {a, e} , {a, h} , {b, g} , {c, f} ,
{c, j} , {d, k} , {e, i} , {g, l} , {h, l} , and {i, k} .

8. We can remove any one of the three edges to produce a spanning tree. The trees are therefore the ones shown
below.

10. We can remove any one of the four edges in the middle square to produce a spanning tree, as shown.

12. This is really the same problem as Exercises 11a, 12a, and 13a in Section 11.1, since a spanning tree of Kn is
just a tree with n vertices. The answers are restated here for convenience.
a) 1 b) 2 c) 3

14. The tree is shown in heavy lines. It is produced by starting at a and continuing as far as possible without
backtracking, choosing the first unused vertex (in alphabetical order) at each point. When the path reaches
vertex l , we need to backtrack. Backtracking to h , we can then form the path all the way to n without
further backtracking. Finally we backtrack to vertex i to pick up vertex m .

308 Chapter 11 Trees

16. If we start at vertex a and use alphabetical order, then the breadth-first search spanning tree is unique.
Consider the graph in Exercise 13. We first fan out from vertex a , picking up the edges {a, b} and {a, c} .
There are no new vertices from b , so we fan out from c , to get edge {c, d} . Then we fan out from d to get
edges {d, e} and {d, f} . This process continues until we have the entire tree shown in heavy lines below.

The tree for the graph in Exercise 14 is shown in heavy lines. It is produced by the same fanning-out
procedure as described above.

The spanning tree for the graph in Exercise 15 is shown in heavy lines.

18. a) We start at the vertex in the middle of the wheel and visit all its neighbors—the vertices on the rim. This
forms the spanning tree K1,6 (see Exercise 19 for the general situation).
b) We start at any vertex and visit all its neighbors. Thus the resulting spanning tree is therefore K1,4 .
c) See Exercise 21 for the general result. We get a “double star”: a K1,3 and a K1,2 with their centers joined
by an edge.
d) By the symmetry of the cube, the result will always be the same (up to isomorphism), regardless of the
order we impose on the vertices. We start at a vertex and fan out to its three neighbors. From one of them
we fan out to two more, and pick up one more vertex from another neighbor. The final vertex is at a distance
3 from the root. In this figure we have labeled the vertices in the order visited.

20. Since every vertex is connected to every other vertex, the breadth-first search will construct the tree K1,n−1 ,
with every vertex adjacent to the starting vertex. The depth-first search will produce a simple path of length
n− 1 for the same reason.

22. The breadth-first search trees for Qn are most easily described recursively. For n = 0 the tree is just a vertex.
Given the tree Tn for Qn , the tree for Qn+1 consists of Tn with one extra child of the root, coming first in
left-to-right order, and that child is the root of a copy of Tn . These trees can also be described explicitly. If
we think of the vertices of Qn as bit strings of length n , then the root is the string of n 0’s, and the children
of each vertex are all the vertices that can be obtained by changing one 0 that has no 1’s following it to a 1.
For the depth-first search tree, the tree will depend on the order in which the vertices are picked. Because Qn

has a Hamilton path, it is possible that the tree will be a path. However, if “bad” choices are made, then the
path might run into a dead end before visiting all the vertices, in which case the tree will have to branch.

Section 11.4 Spanning Trees 309

24. We can order the vertices of the graph in the order in which they are first encountered in the search processes.
Note, however, that we already need an order (at least locally, among the neighbors of a vertex) to make the
search processes well-defined. The resulting orders given by depth-first search or breadth-first search are not
the same, of course.

26. In each case we will call the colors red, blue, and green. Our backtracking plan is to color the vertices in
alphabetical order. We first try the color red for the current vertex, if possible, and then move on to the next
vertex. When we have backtracked to this vertex, we then try blue, if possible. Finally we try green. If no
coloring of this vertex succeeds, then we erase the color on this vertex and backtrack to the previous vertex.
For the graph in Exercise 7, no backtracking is required. We assign red, blue, red, and green to the vertices in
alphabetical order. For the graph in Exercise 8, again no backtracking is required. We assign red, blue, blue,
green, green, and red to the vertices in alphabetical order. And for the graph in Exercise 9, no backtracking
is required either. We assign red, blue, red, blue, and blue to the vertices in alphabetical order.

28. a) The largest number that can possibly be included is 19. Since the sum of 19 and any smaller number in
the list is greater than 20, we conclude that no subset with sum 20 contains 19. Then we try 14 and reach
the same conclusion. Finally, we try 11, and note that after we have included 8, the list has been exhausted
and the sum is not 20. Therefore there is no subset whose sum is 20.
b) Starting with 27 in the set, we soon find that the subset {27, 14} has the desired sum of 41.
c) First we try putting 27 into the subset. If we also include 24, then no further additions are possible, so
we backtrack and try including 19 with 27. Now it is possible to add 14, giving us the desired sum of 60.

30. a) We begin at the starting position. At each position, we keep track of which moves we have tried, and
we try the moves in the order up, down, right, and left. (We also assume that the direction from which we
entered this position has been tried, since we do not want our solution to retrace steps.) When we try a move,
we then proceed along the chosen route until we are stymied, at which point we backtrack and try the next
possible move. Either this will eventually lead us to the exit position, or we will have tried all the possibilities
and concluded that there is no solution.
b) We start at position X. Since we cannot go up, we try going down. At the next intersection there is only
one choice, so we go left. (All directions are stated in terms of our view of the picture.) This lead us to a
dead end. Therefore we backtrack to position X and try going right. This leads us (without choices) to the
opening about two thirds of the way from left to right in the second row, where we have the choice of going
left or down. We try going down, and then right. No further choices are possible until we reach the opening
just above the exit. Here we first try going up, but that leads to a dead end, so we try going down, and that
leads us to the exit.

32. There is one tree for each component of the graph.

34. First notice that the order in which vertices are put into (and therefore taken out of) the list L is level-order.
In other words, the root of the resulting tree comes first, then the vertices at level 1 (put into the list while
processing the root), then the vertices at level 2 (put into the list while processing vertices at level 1), and
so on. (A formal proof of this is given in Exercise 47.) Now suppose that uv is an edge not in the tree, and
suppose without loss of generality that the algorithm processed u before it processed v . (In other words, u

entered the list L before v did.) Since the edge uv is not in the tree, it must be the case that v was already
in the list L when u was being processed. In order for this to happen, the parent p of v must have already
been processed before u . Note that p’s level in the tree is one less than v’s level. Therefore u’s level is greater
than or equal to p’s level but less than or equal to v’s level, and the proof is complete.

310 Chapter 11 Trees

36. We build the spanning tree using breath-first search. If at some point as we are fanning out from a vertex
v we encounter a neighbor w of v that is already in the tree, then we know that there is a simple circuit,
consisting of the path from the root to v , followed by the edge vw , followed by the path from the root to w

traversed backward.

38. We construct a tree using one of these search methods. We color the first vertex red, and whenever we add a
new vertex to the tree, we color it blue if we reach it from a red vertex, and we color it red if we reach it from
a blue vertex. When we encounter a vertex that is already in the tree (and therefore will not be added to the
tree), we compare its color to that of the vertex we are currently processing. If the colors are the same, then
we know immediately that the graph is not bipartite. If we get through the entire process without finding
such a clash, then we conclude that the graph is bipartite.

40. The algorithm is identical to the algorithm for obtaining spanning trees by deleting edges in simple circuits.
While circuits remain, we remove an edge of a simple circuit. This does not disconnect any connected com-
ponent of the graph, and eventually the process terminates with a forest of spanning trees of the components.

42. We apply breadth-first search, starting from the first vertex. When that search terminates, i.e., when the list
is emptied, then we look for the first vertex that has not yet been included in the forest. If no such vertex is
found, then we are done. If v is such a vertex, then we begin breadth-first search again from v , constructing
the second tree in the forest. We continue in this way until all the vertices have been included.

44. If the edge is a cut edge, then it provides the unique simple path between its endpoints. Therefore it must be
in every spanning tree for the graph. Conversely, if an edge is not a cut edge, then it can be removed without
disconnecting the graph, and every spanning tree of the resulting graph will be a spanning tree of the original
graph not containing this edge. Thus we have shown that an edge of a connected simple graph must be in
every spanning tree for this graph if and only if the edge is a cut edge—i.e., its removal disconnects the graph.

46. Assume that the connected simple graph G does not have a simple path of length at least k . Consider the
longest path in the depth-first search tree. Since each edge connects an ancestor and a descendant, we can
bound the number of edges by counting the total number of ancestors of each descendant. But if the longest
path is shorter than k , then each descendant has at most k − 1 ancestors. Therefore there can be at most
(k − 1)n edges.

48. We modify the pseudocode given in Algorithm 1 by initializing a global variable m to be 0 at the beginning
of the algorithm, and adding the statements “m := m + 1” and “assign m to vertex v” as the first line of
procedure visit . To see that this numbering corresponds to the numbering of the vertices created by a preorder
traversal of the spanning tree, we need to show that each vertex has a smaller number than its children, and
that the children have increasing numbers from left to right (assuming that each new child added to the tree
comes to the right of its siblings already in the tree). Clearly the children of a vertex get added to the tree
only after that vertex is added, so their number must exceed that of their parent. And if a vertex’s sibling has
a smaller number, then it must have already been visited, and therefore already have been added to the tree.

50. Note that a “lower” level is further down the tree, i.e., further from the root and therefore having a larger
value. (So “lower” really means “greater than”!) This is similar to Exercise 34. Again notice that the order
in which vertices are put into (and therefore taken out of) the list L is level-order. In other words, the root
of the resulting tree comes first, then the vertices at level 1 (put into the list while processing the root), then
the vertices at level 2 (put into the list while processing vertices at level 1), and so on. Now suppose that
uv is a directed edge not in the tree. First assume that the algorithm processed u before it processed v . (In

Section 11.4 Spanning Trees 311

other words, u entered the list L before v did.) Since the edge uv is not in the tree, it must be the case that
v was already in the list L when u was being processed. In order for this to happen, the parent p of v must
have already been processed before u . Note that p’s level in the tree is one less than v’s level. Therefore u’s
level is greater than or equal to p’s level but less than or equal to v’s level, so this directed edge goes from a
vertex at one level to a vertex either at the same level or one level below. Next suppose that the algorithm
processed v before it processed u . Then v’s level is at or above u’s level, and there is nothing else to prove.

52. Maintain a global variable c , initialized to 0. At the end of procedure visit , add the statements “c := c+ 1”
and “assign c to v .” We need to show that each vertex has a larger number than its children, and that the
children have increasing numbers from left to right (assuming that each new child added to the tree comes
to the right of its siblings already in the tree). A vertex v is not numbered until its processing is finished,
which means that all of the descendants of v must have finished their processing. Therefore each vertex has
a larger number than all of its children. Furthermore, if a vertex’s sibling has a smaller number, then it must
have already been visited, and therefore already have been added to the tree. (Note that listing the vertices
by number gives a postorder traversal of the tree.)

54. Suppose that T1 contains a edges that are not in T2 , so that the distance between T1 and T2 is 2a . Suppose
further that T2 contains b edges that are not in T3 , so that the distance between T2 and T3 is 2b . Now at
worst the only edges that are in T1 and not in T3 are those a + b edges that are in T1 and not in T2 , or in
T1 and T2 but not in T3 . Therefore the distance between T1 and T3 is at most 2(a + b).

56. Following the construction of Exercise 55, we reduce the distance between spanning trees T1 and T2 by 2
when we remove edge e1 from T1 and add edge e2 to it. Thus after applying this operation d times, we can
convert any tree T1 into any other spanning tree T2 (where d is half the distance between T1 and T2).

58. By Exercise 16 in Section 10.5 there is an Euler circuit C in the directed graph. We follow C and delete
from the directed graph every edge whose terminal vertex has been previously visited in C . We claim that
the edges that remain in C form a rooted tree. Certainly there is a directed path from the root to every other
vertex, since we only deleted edges that allowed us to reach vertices we could already reach. Furthermore,
there can be no simple circuits, since we removed every edge that would have completed a simple circuit.

60. Since this is an “if and only if” statement, we have two things to prove. First, suppose that G contains
a circuit v1, v2, . . . , vk, v1 , and without loss of generality, assume that v1 is the first vertex visited in the
depth-first search process. Since there is a directed path from v1 to vk , vertex vk must have been visited
before the processing of v1 is completed. Therefore v1 is an ancestor of vk in the tree, and the edge vkv1 is
a back edge. Now we have to prove the converse. Suppose that T contains a back edge uv from a vertex u

to its ancestor v . Then the path in T from v to u , followed by this edge, is a circuit in G .

312 Chapter 11 Trees

SECTION 11.5 Minimum Spanning Trees
2. We start with the minimum weight edge {a, b} . The least weight edge incident to the tree constructed so far

is edge {a, e} , with weight 2, so we add it to the tree. Next we add edge {d, e} , and then edge {c, d} . This
completes the tree, whose total weight is 6.

4. The edges are added in the order {a, b} , {a, e} , {a, d} , {c, d} , {d, h} , {a,m} , {d, p} , {e, f} , {e, i} , {g, h} ,
{l, p} , {m,n} , {n, o} , {f, j} , and {k, l} , for a total weight of 28.

6. With Kruskal’s algorithm, we add at each step the shortest edge that will not complete a simple circuit.
Thus we pick edge {a, b} first, and then edge {c, d} (alphabetical order breaks ties), followed by {a, e} and
{d, e} .The total weight is 6.

8. The edges are added in the order {a, b} , {a, e} , {c, d} , {d, h} , {a, d} , {a,m} , {d, p} , {e, f} , {e, i} , {g, h} ,
{l, p} , {m,n} , {n, o} , {f, j} , and {k, l} , for a total weight of 28.

10. One way to do this is simply to apply the algorithm of choice to each component. In practice it is not clear
what that means, since we would have to determine the components first. More to the point, we can implement
the procedures as follows. For Prim’s algorithm, start with the first vertex and repeatedly add to the tree the
shortest edge adjacent to it that does not complete a simple circuit. When no such edges remain, we find a
vertex that is not yet in the spanning forest and grow a new tree from this vertex. We repeat this process until
no new vertices remain. Kruskal’s algorithm is even simpler to implement. We keep choosing the shortest
edge that does not complete a simple circuit, until no such edges remain. The result is a spanning forest of
minimum weight.

12. If we simply replace the word “smallest” with the word “largest” (and replace the word “minimum” in the
comment with the word “maximum”) in Algorithm 2, then the resulting algorithm will find a maximum
spanning tree.

14. The answer is unique. It uses edges {d, h} , {d, e} , {b, f} , {d, g} , {a, b} , {b, e} , {b, c} , and {f, i} .

16. We follow the procedure outlined in the solution to Exercise 17. Recall that the minimum spanning tree uses
the edges Atlanta–Chicago, Atlanta–New York, Denver–San Francisco, and Chicago–San Francisco. First we
delete the edge from Atlanta to Chicago. The minimum spanning tree for the remaining graph has cost $3900.
Next we delete the edge from Atlanta to New York (and put the previously deleted edge back). The minimum
spanning tree now has cost $3800. Next we look at the graph with the edge from Denver to San Francisco
deleted. The minimum spanning tree has cost $4000. Finally we look at the graph with the edge from Chicago
to San Francisco deleted. The minimum spanning tree has cost $3700. This last tree is our answer, then; it
consists of the links Atlanta–Chicago, Atlanta–New York, Denver–San Francisco, and Chicago–Denver.

18. Suppose that an edge e with smallest weight is not included in some minimum spanning tree; in other words,
suppose that the minimum spanning tree T contains only edges with weights larger than that of e . If we add
e to T , then we will obtain a graph with exactly one simple circuit, which contains e . We can then delete
some other edge in this circuit, resulting in a spanning tree with weight strictly less than that of T (since
all the other edges have larger weight than e has). This is a contradiction to the fact that T is a minimum
spanning tree. Therefore an edge with smallest weight must be included in T .

20. We start with the New York to Denver link and then form a spanning tree by successively adding the cheapest
edges that do not form a simple circuit. In fact the three cheapest edges will do: Atlanta–Chicago, Atlanta–
New York, and Denver–San Francisco. This gives a cost of $4000.

Section 11.5 Minimum Spanning Trees 313

22. The algorithm is the same as Kruskal’s, except that instead of starting with the empty tree, we start with the
given set of edges. (If there is already a simple circuit among these edges, then there is no solution.)

24. We prove this by contradiction. Suppose that there is a simple circuit formed after the addition of edges at
some stage in the algorithm. The circuit will contain some edges that were added at that stage and perhaps
some edges that were already present. Let e1 , e2 , . . . , er be the edges that are new, in the order they are
traversed in the circuit. Thus the circuit can be thought of as the sequence e1 , T1 , e2 , T2 , . . . , er , Tr , e1 ,
where each Ti is a tree that existed before the addition of new edges. Each edge in this sequence was the edge
picked by the tree containing one of its two endpoints, so since there are the same number of trees as there
are edges in this sequence, each tree must have picked a different edge. However, let e be the shortest edge
(after tie-breaking) among {e1, e2, . . . , er} . Then the tree at both of its ends necessarily picked e to add to
the tree, a contradiction. Therefore there are no simple circuits.

26. The actual implementation of this algorithm is more difficult than this pseudocode shows, of course.

procedure Sollin(G : simple graph)
initialize the set of trees to be the set of vertices
while |set of trees | > 1 do

for each tree Ti in the set of trees
ei := the shortest edge from a vertex in Ti to a vertex not in Ti

add all the ei’s to the trees already present and
reorganize the resulting graph into a set of trees

28. This is a special case of Exercise 29, with r equal to the number of vertices in the graph (each vertex is a tree
by itself at the beginning of the algorithm); see the solution to that exercise.

30. As argued in the solution to Exercise 29, each stage in the algorithm reduces the number of trees by a factor
of at least 2. Therefore after k stages at most n/2k trees remain. Since the number of trees is an integer,
the number must be less than or equal to 0n/2k1 .

32. Let G be a connected weighted graph. Suppose that the successive edges chosen by Kruskal’s algorithm are
e1 , e2 , . . . , en−1 , in that order, so that the tree S containing these edges is the tree constructed by the
algorithm. Let T be a minimum spanning tree of G containing e1 , e2 , . . . , ek , with k chosen as large as
possible (possibly 0). If k = n − 1, then we are done, since S = T . Otherwise k < n − 1, and in this case
we will derive a contradiction by finding a minimum spanning tree T ′ which gives us a larger value of k .
Consider T ∪ {ek+1} . Since T is a tree, this graph has a simple circuit which must contain ek+1 . Some edge
e in this simple circuit is not in S , since S is a tree. Furthermore, e was available to be chosen by Kruskal’s
algorithm at the point at which ek+1 was chosen, since there is no simple circuit among {e1, e2, . . . , ek, e}
(these edges are all in T). Therefore the weight of ek+1 is less than or equal to the weight of e (otherwise the
algorithm would have chosen e instead of ek+1). Now add ek+1 to T and delete e ; call the resulting tree T ′ .
The weight of T ′ cannot be any greater than the weight of T . Therefore T ′ is also a minimum spanning tree,
which contains the edges e1 , e2 , . . . , ek , ek+1 . This contradicts the choice of T , and our proof is complete.

34. This algorithm converts G into its minimum spanning tree. To implement it, it is best to order the edges by
decreasing weight before we start.

procedure reverse-delete(G : weighted connected undirected graph with n vertices)
while G has more than n− 1 edges

e := any edge of largest weight that is in a simple circuit in G
(i.e., whose removal would not disconnect G)

G := G with edge e deleted

314 Chapter 11 Trees

SUPPLEMENTARY EXERCISES FOR CHAPTER 11
2. There are 20 such trees. We can organize our count by the height of the tree. There is just 1 rooted tree on

6 vertices with height 5. If the height is 4 (so that there is a path from the root containing 5 vertices), then
there are 4 choices as to where to attach the sixth vertex. If the height is 3, fix a path of length three from
the root. Two more vertices need to be added. If they are both attached directly to the original path, then
there are C(3 + 2 − 1, 2) = 6 ways to attach them (since there are three possible points of attachment). On
the other hand if they form a path of length 2 from their point of attachment, then there are 2 choices. Next
suppose the height is 2. If there are not two disjoint paths of length 2 from the root, then there are 4 ways
that the other 3 vertices can be attached to a given path of length 2 from the root (0, 1, 2, or 3 of them
can be attached to the root). If there are two disjoint paths, then there are 2 choices for the sixth vertex.
Finally, there is 1 tree of height 1. Thus we have 1 + 4 + 6 + 2 + 4 + 2 + 1 = 20 trees in all.

4. We know that the sum of the degrees must be 2(n− 1). The n− 1 pendant vertices account for n− 1 in this
sum, so the degree of the other vertex must be n − 1. This vertex is one part of K1,n−1 , therefore, and the
pendant vertices are the other part.

6. We prove this by induction on n . The problem is trivial if n ≤ 2, so assume that the inductive hypothesis
holds and let n ≥ 3. First note that at least one of the positive integers di must equal 1, since the sum of n

numbers each greater than or equal to 2 is greater than or equal to 2n . Without loss of generality assume that
dn = 1. Now it is impossible for all the remaining di’s to equal 1, since 2n − 2 > n (we are assuming that
n > 2); without loss of generality assume that d1 > 1. Now apply the inductive hypothesis to the sequence
d1 − 1, d2, d3, . . . , dn−1 . There is a tree with these degrees. Add an edge from the vertex with degree d1 − 1
to a new vertex, and we have the desired tree with degrees d1, d2, . . . , dn .

8. We consider the tree as a rooted tree. One part is the set of vertices at even-numbered levels, and the other
part is the set of vertices at odd-numbered levels.

10. The following pictures show some B-trees with the desired height and degree. The root must have either 2 or
3 children, and the other internal vertices must have between 2 and 4 children, inclusive. Note that our first
example is a complete binary tree.

Supplementary Exercises 315

12. The lower bound for the height of a B-tree of degree k with n leaves comes from the upper bound for the
number of leaves in a B-tree of degree k with height h , obtained in Exercise 11. Since there we found that
n ≤ kh , we have h ≥ logk n . The upper bound for the height of a B-tree of degree k with n leaves comes
from the lower bound for the number of leaves in a B-tree of degree k with height h , obtained in Exercise 11.
Since there we found that n ≥ 2%k/2&h−1 , we have h ≤ 1 + log#k/2$(n/2).

14. Since Bk+1 is formed from two copies of Bk , the number of vertices doubles as k increases by 1. Since B0

had 1 = 20 vertices, it follows by induction that Bk has 2k vertices.

16. Looking at the pictures for Bk leads one to conjecture that the number of vertices at depth j is C(k, j).
For example, in B4 the number of vertices at the various levels form the sequence 1, 4, 6, 4, 1, which are
exactly C(4, 0), C(4, 1), C(4, 2), C(4, 3), C(4, 4). To prove this by mathematical induction (the basis step
being trivial), note that by the way Bk+1 is constructed, the number of vertices at level j + 1 in Bk+1 is
the sum of the number of vertices at level j + 1 in Bk and the number of vertices at level j in Bk . By the
inductive hypothesis this is C(k, j +1)+C(k, j), which equals C(k+1, j +1) as desired, by Pascal’s identity.
This holds for j = k as well, and at the 0th level, too, there is clearly just one vertex.

18. Our inductive hypothesis is that the root and the left-most child of the root of Bk have degree k and every
other vertex has degree less than k . This is certainly true for B0 and B1 . Consider Bk+1 . By Exercise 17,
its root has degree k + 1, as desired. The left-most child of the root is the root of a Bk , which had degree k ,
and we have added one edge to connect it to the root of Bk+1 , so its degree is now k + 1, as desired. Every
other vertex of Bk+1 has the same degree it had in Bk , which was at most k by the inductive hypothesis,
and our proof is complete.

20. That an Sk-tree has 2k vertices is clear by induction, since an Sk-tree has twice as many vertices as an
Sk−1-tree and an S0-tree has 20 = 1 vertex. Also by induction we see that there is a unique vertex at level k ,
since there was a unique vertex at level k− 1 in the Sk−1-tree whose root was made a child of the root of the
other Sk−1-tree in the construction of the Sk-tree.

22. The level order in each case is the alphabetical order in which the vertices are labeled.

24. Given the set of universal addresses, we need to check two things. First we need to be sure that no address
in our list is the address of an internal vertex. This we can accomplish by checking that no address in our
list is a prefix of another address in our list. (Also of course, if the list contains 0, then it must contain no
other addresses.) Second we need to make sure that all the internal vertices have a leaf as a descendant. To
check this, for each address a1.a2. · · · .ar in the list, and for each i from 1 to r , inclusive, and for each b with
1 ≤ b < ai , we check that there is an address in the list with prefix a1.a2. · · · .ai−1.b .

26. We assume that the graph in question is connected. (If it is not, then the statement is vacuously true.) If
we remove all the edges of a cut set, the resulting graph cannot still be connected. If the resulting graph
contained all the edges of a spanning tree, then it would be connected. Therefore there must be at least one
edge of the spanning tree in the cut set.

28. A tree is necessarily a cactus, since no edge is in any simple circuit at all.

30. Suppose G is not a cactus; we will show that G contains a very simple circuit with an even number of edges
(see the solution to Exercise 27 for the definition of “very simple circuit”). Suppose instead, then, that every
very simple circuit of G contains an odd number of edges. Since G is not a cactus, we can find an edge
e = {u, v} that is in two different very simple circuits. By simplifying the second circuit if necessary, we can

316 Chapter 11 Trees

assume that the situation is as pictured here, where x might be u and y might be v . Since the circuits
u, P3, x, P1, y, P4, v, e, u and u, P3, x, P2, y, P4, v, e, u are both odd, the paths P1 and P2 have to have the
same parity. Therefore the very simple circuit consisting of P1 followed by P2 backwards has even length, as
desired.

32. The only spanning tree here is the graph itself, and vertex i has degree greater than 3. Thus there is no
degree-constrained spanning tree where each vertex has degree less than or equal to 3.

34. Such a tree must be a path (since it is connected and has no vertices of degree greater than 2), and since it
includes every vertex in the graph, it is a Hamilton path.

36. The graphs in the first three parts are caterpillars, since every vertex is either in the horizontal path of length
3 or adjacent to a vertex in this path. In part (d) it is clear that there is no path that can serve as the “spine”
of the caterpillar.

38. a) We can gracefully label the vertices in the path in the following manner. Suppose there are n vertices. We
label every other vertex, starting with the first, with the numbers 1, 2, . . . , %n/2& ; we number the remaining
vertices, in the same order, with n , n−1, . . . , %n/2&+1. For example, if n = 7, then the vertices are labeled
1, 7, 2, 6, 3, 5, 4. The successive differences are then easily seen to be n− 1, n− 2, . . . , 2, 1, as desired.
b) We extend the idea in the solution to part (a), allowing for labeling the “feet” as well as the “spine” of
the caterpillar. We can assume that the first and last vertices in the spine have no feet. First we label the
vertex at the beginning of the spine 1, and, as above, label the vertex adjacent to it n . If there are some feet
at this vertex, then we label them 2, 3, . . . , k (where the number of feet there is k − 1). Then we label the
next vertex on the spine with the smallest available number—either 2 or k+1 (if there were feet that needed
labeling). If this vertex has feet, then we label them n− 1, n− 2, and so on. The largest available number is
then used for the label of the next vertex on the spine. We continue in this manner until we have labeled the
entire caterpillar. It is clear that the labeling is graceful. See the example below.

40. By Exercise 52 in Section 11.4, we can number the vertices while doing depth-first search in order of their
finishing. It follows from the solution given there that this order corresponds to postorder in the spanning
tree. We claim that the opposite order of these numbers gives a topological sort of the vertices in the graph.
We must show that there is no directed edge uv such that u’s number in this process is less than v’s number
(prior to reversing the order). Clearly this is true if uv is a tree edge, since the numbers of all of a vertex’s
descendants are less than the number of that vertex. By Exercise 60 in Section 11.4, there are no back edges
in our acyclic digraph. By Exercise 51 in Section 11.4, if uv is a forward edge, then it connects a vertex to a
descendant, so the number of u exceeds the number of v , and that is consistent with our given partial order.
And if uv is a cross edge, then v is in a previously visited subtree, so the number on v is less than the number
on u , again consistent with the given partial order.

Supplementary Exercises 317

42. We form a graph whose vertices are the allowable positions of the people and boat. Each vertex, then, contains
the information as to which of the six people and the boat are on, say, the near bank (the remaining people
and/or boat are on the far bank). If we label the people X,Y, Z, x, y, z (the husbands in upper case letters
and the wives in the corresponding lower case letters) and the boat B , then the initial position is XY ZxyzB

and the desired final position is the empty set. Two vertices are joined by an edge if it is possible to obtain one
position from the other with one legal boat ride (where “legal” means of course that the rules of the puzzle
are not violated—that no man is left alone with a woman other than his wife, and that the boat crosses the
river only with one or two people in it). For example, the vertex Y Zyz is adjacent to the vertex XY ZxyzB ,
since the married couple Xx can travel to the opposite bank in the boat. Our task is to find a path in this
graph from the initial position to the desired final position. Dijkstra’s algorithm could be used to find such
a path. The graph is too large to draw here, but with this notation (and arrows for readability), one path is
XY ZxyzB → Y Zyz → Y ZxyzB → Y Zy → Y ZyzB → Zz → ZyzB → Z → ZzB → Ø.

44. We assume that what is being asked for here is not “a minimum spanning tree of the graph that also happens
to satisfy the degree constraint” but rather “a tree of minimum weight among all spanning trees that satisfy
the degree constraint.”
a) Since b is a cut vertex we must include at least one of the two edges {b, c} and {b, d} , and one of the other
three edges incident to b . Thus the best we can do is to include edges {b, c} and {a, b} . It is then easy to see
that the unique minimum spanning tree with degrees constrained to be at most 2 consists of these two edges,
together with {c, d} , {a, f} , and {e, f} .
b) Obviously we must include edge {a, b} . We cannot include edge {b, g} , because this would force some
vertex to have degree greater than 2 in the spanning tree. For a similar reason we cannot include edge {b, d} .
A little more thought shows that the minimum spanning tree under these constraints consists of edge {a, b} ,
together with edges {b, c} , {c, d} , {d, g} , {f, g} , and {e, f} .

46. The “only if” direction is immediate from the definition of arborescence. To prove the “if” direction, perform a
directed depth-first search on G starting at vertex r . Because there is a directed path from r to every v ∈ V ,
this search will eventually visit every vertex in G and thereby produce a spanning tree of the underlying
undirected graph. The directed paths in this tree are the desired paths in the arborescence.

