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CHAPTER 13
Modeling Computation

SECTION 13.1 Languages and Grammars
2. There are of course a large number of possible answers. Five of them are the sleepy hare runs quickly , the

hare passes the tortoise, the happy hare runs slowly , the happy tortoise passes the hare, and the hare passes
the happy hare.

4. a) It suffices to give a derivation of this string. We write the derivation in the obvious way. S ⇒ 1S ⇒ 11S ⇒
111S ⇒ 11100A ⇒ 111000.
b) Every production results in a string that ends in S , A , or 0. Therefore this string, which ends with a 1,
cannot be generated.
c) Notice that we can have any number of 1’s at the beginning of the string (including none) by iterating the
production S → 1S . Eventually the S must turn into 00A , so at least two 0’s must come next. We can then
have as many 0’s as we like by using the production A → 0A repeatedly. We must end up with at least one
more 0 (and therefore a total of at least three 0’s) at the right end of the string, because the A disappears
only upon using A → 0. So the language generated by G is the set of all strings consisting of zero or more
1’s followed by three or more 0’s . We can write this as { 0n1m | n ≥ 0 and m ≥ 3 } .

6. a) There is only one terminal string possible here, namely abbb . Therefore the language is {abbb} .
b) This time there are only two possible strings, so the answer is {aba, aa} .
c) Note that A must eventually turn into ab . Therefore the answer is {abb, abab} .
d) If the rule S → AA is applied first, then the string that results must be N a’s , where N is an even
number greater than or equal to 4, since each A becomes a positive even number of a’s . If the rule S → B is
applied first, then a string of one or more b’s results. Therefore the language is { a2n | n ≥ 2 }∪{ bn | n ≥ 1 } .
e) The rules imply that the string will consist of some a’s , followed by some b’s , followed by some more a’s
(“some” might be none, though). Furthermore, the total number of a’s equals the total number of b’s . Thus
we can write the answer as { anbn+mam | m,n ≥ 0 } .

8. If we apply the rule S → 0S1 n times, followed by the rule S → λ , then the string 0n1n results. On the
other hand, no other derivations are possible, since once the rule S → λ is used, the derivation stops. This
proves the given statement.

10. a) It follows by induction that unless the derivation has stopped, the string generated by any sequence of
applications of the rules must be of the form 0nS1m for some nonnegative integers n and m . Conversely,
every string of this form can be obtained. Since the only other rule is S → λ , the only terminal strings
generated by this grammar are 0n1m .
b) A derivation consists of some applications of the rules until the S disappears, followed, perhaps, by some
more applications of the rules. First let us see what can happen up to the point at which the S disappears.
The first rule adds 0’s to the left of the S . The last rule makes the S disappear, whereas rules two and three
turn the S into 1A or 1. Therefore the possible strings generated at the point the S disappears are 0n , 0n1,
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and 0n1A , where n is a nonnegative integer. By rules four and five, the A eventually turns into one or more
1’s . Therefore the possible strings are 0n1m for nonnegative integers n and m .

12. By following the pattern given in the solution to Exercise 11, we can certainly generate all the strings 0n1n2n ,
for n ≥ 0. We must show that no other terminal strings are possible. First, the number of 0’s , A’s , and B’s
must be equal at the point at which S disappears, with all the 0’s on the left (where they must stay). The
rule BA → BA tells us the A’s can only move left across the B’s , not conversely. Furthermore, A’s turn
into 1’s , but only if connected by 1’s to a 0; therefore the only way to get rid of the A’s is for them all to
move to the left of the B’s and then turn into 1’s . Finally, the B’s can only turn into 2’s , and they are all
on the right.

14. In each case we will list only the productions, because V and T will be obvious from the context, and S

speaks for itself.
a) For this finite set of strings, we can simply have S → 10, S → 01, and S → 101.
b) To get started we can have S → 00A ; this gives us the two 0’s at the start of each string in the language.
After that we can have anything we want in the middle, so we want A → 0A and A → 1A . Finally we insist
on ending with a 1, so we have A → 1.
c) The even number of 1’s can be accomplished with S → 11S , and the final 0 tells us to include S → 0 as
the only other production. Note that zero is an even number, so the string 0 is in the language.
d) If there are not two consecutive 0’s or two consecutive 1’s , the symbols must alternate. We can accomplish
this by having an optional 0 to start, then any number of repetitions of 10, and then an optional 1 at the
end. One way to do this is with these productions: S → ABC , A → 0, A → λ , B → 10B , B → λ , C → 1,
C → λ .

16. In each case we will list only the productions, because V and T will be obvious from the context, and S

speaks for itself.
a) It suffices to have S → 1S and S → λ .
b) We let A represent the string of 0’s . Thus we take S → 1A , A → 0A , and A → λ . (Here A → A0 works
just as well as A → 0A , so either one is fine.)
c) It suffices to have S → 11S and S → λ .

18. a) We want exactly one 0 and an even number of 1’s to its right. Thus we can use the rules S → 0A ,
A → 11A , and A → λ .
b) We can have the new symbols grow out from the center, using the rules S → 0S11 and S → λ .
c) We can have the 0’s grow out from the center, and then have the center turn into a 1-making machine.
The rules we propose are S → 0S0, S → A , A → 1A , and A → λ .

20. We can simply have identical symbols grow out from the center, with an optional final symbol in the center
itself. Thus we use the rules S → 0S0, S → 1S1, S → λ , S → 0, and S → 1. Note that this grammar is
context-free since each left-hand side is a single nonterminal symbol.

22. a) The string is the leaves of the tree, read from left to right. Thus the string is “a large mathematician hops
wildly.”
b) Again, the string is the leaves from left to right, namely +987.

24. a) If we look at the beginning of the string, we see that we can use the rule S → bcS first. Then since the
remainder of the string (after the initial bc) starts with bb , we can use the rule S → bbS . Finally, we can use
the rule S → a . We therefore obtain the first tree shown below.
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b) This is similar to part (a), using three rules to take care of the first six characters, two by two.
c) Again we work two by two from the left, producing the tree shown.

26. a) Since the string starts with a b , we might have either Baba ⇒ baba or Caba ⇒ baba as the last step in
the derivation. The latter looks more hopeful, since the Ca could have come from the rule A → Ca , meaning
that the derivation ended Aba ⇒ Caba ⇒ baba . Now we see that since B → Ba and B → b are rules, the
derivation could have been S ⇒ AB ⇒ ABa ⇒ Aba ⇒ Caba ⇒ baba .
b) There is no way to have obtained an a on the left, since every rule has every a preceded by another symbol
(which does not ever turn into λ).
c) This is just like part (a), since we could have used the rule C → cb instead of the rule C → b , obtaining
the extra c on the left. Thus the derivation is S ⇒ AB ⇒ ABa ⇒ Aba ⇒ Caba ⇒ cbaba .
d) The only way for the symbol c to have appeared is through the rule C → cb . Thus we may assume (without
loss of generality) that the last step in the derivation was bbbCa ⇒ bbbcba . Now the only way for Ca to have
occurred is from the rule A → Ca . Thus we can assume that the derivation ends bbbA ⇒ bbbCa ⇒ bbbcba .
But there is no way for the A to appear at the end (the only rule producing an A puts a B after it). Therefore
this string is not in the language.

28. a) We just translate mechanically from the Backus-Naur form to the productions. Let us use E for 〈expression〉
(which we assume is the starting symbol), and V for 〈variable〉 for convenience. The rules are E → (E),
E → E + E , E → E ∗ E , and E → V (from the first form), together with V → x and V → y (from the
second).
b) The tree is easy to construct. The outermost operation is +, so the top part of the tree shows E becoming
E + E . The right E now is the variable x . The left E is an expression in parentheses, which is itself the
product of two variables.

30. a) We first incorporate all the rules from the solution to Exercise 29a except the first two. Then we simply
add the rule S → 〈sign〉〈integer〉/〈positive integer〉 .
b) We incorporate all of the solution to Exercise 29b except for the first line, together with a rule 〈fraction〉 ::=
〈sign〉〈integer〉/〈positive integer〉 .
c) The tree practically draws itself from the rules.
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32. We ignore the need for spaces between the names, and we assume that names need to be nonempty. We also
do not assume anything more than was given in the statement of the exercise.

〈person〉 ::= 〈firstname〉〈middleinitial〉〈lastname〉
〈lastname〉 ::= 〈letterstring〉
〈middleinitial〉 ::= 〈letter〉
〈firstname〉 ::= 〈ucletter〉 | 〈ucletter〉letterstring
〈letterstring〉 ::= 〈letter〉 | 〈letterstring〉〈letter〉
〈letter〉 ::= 〈lcletter〉 | 〈ucletter〉
〈lcletter〉 ::= a | b | c | . . . | z
〈ucletter〉 ::= A | B | C | . . . | Z

34. a) Strings in this set consist of one or more letters followed by an optional binary digit, followed by one or
more letters. Only the letters a , b , and c are used, however.
b) Strings in this set consist of an optional plus or minus sign followed by one or more digits.
c) Strings in this set consist of any number of letters, followed by any number of binary digits, followed by
any number of letters. “Any number” includes 0, so the string could consist of letters only or of binary digits
only, and it could also be empty. Only the letters x and y are used, however. Note that (D+)? is equivalent
to D∗ .

36. This is straightforward, using the conventions. We assume that the string gives the sandwich from top to
bottom. Note that words in roman font are constants here, and words in italics are variables.

sandwich ::= bread dressing lettuce?tomato?meat+ cheese∗ bread
dressing ::= mustard | mayonnaise
meat ::= turkey | chicken | beef

38. The cosmetic change is to put angled brackets around the variables used for nonterminal symbols. The
substantive changes are to replace uses of +, ∗ , and ? with rules that have the same effect. For the plus sign,
we replace x+, where x is a symbol by a new symbol, let’s call it 〈xplus〉 , and the new rule

〈xplus〉 ::= x | 〈xplus〉x
Similarly, we replace x∗ , where x is a symbol by a new symbol, let’s call it 〈xstar〉 , and the new rule

〈xstar〉 ::= λ | 〈xstar〉x
where λ is the empty string. Finally, we replace each occurrence of x? by a new symbol, let’s call it 〈xquestion〉 ,
and the new rule

〈xquestion〉 ::= λ | x
where x is a symbol; and we replace each occurrence of (junk)? by a new symbol, let’s call it 〈junkquestion〉 ,
and the new rule

〈junkquestion〉 ::= λ | junk
where junk is a string of symbols.

40. This is very similar to the preamble to Exercise 39. The only difference is that the operators are placed
between their operands, rather than behind them, and parentheses are required in expressions used as factors.
Thus we have the following Backus–Naur form:
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〈expression〉 ::= 〈term〉 | 〈term〉〈addOperator〉〈term〉
〈addOperator〉 ::= + | −
〈term〉 ::= 〈factor〉 | 〈factor〉〈mulOperator〉〈factor〉
〈mulOperator〉 ::= ∗ | /
〈factor〉 ::= 〈identifier〉 | (〈expression〉)
〈identifier〉 ::= a | b | · · · | z

42. The definition of “derivable from” says that it is the reflexive, transitive closure of the relation “directly
derivable from.” Indeed, taking n = 0 in that definition gives us the fact that every string is derivable from
itself; and the existence of a sequence w0 ⇒ w1 ⇒ · · · ⇒ wn for n ≥ 1 means that (w0, wn) is in the transitive
closure of the relation ⇒ (see Theorem 2 in Section 9.4).

SECTION 13.2 Finite-State Machines with Output
2. In each case we need to write down, in a table, all the information contained in the arrows in the diagram.

In part (a), for example, there are arrows from state s1 to s1 labeled 1, 0 and from s1 to s2 labeled 0, 0.
Therefore the row of our table for this machine that gives the information for transitions from s1 shows that
on input 1 the transition is to state s1 and the output is 0, and on input 0 the transition is to state s2 and
the output is 0.

a) Next State Output
State 0 1 0 1

s0 s1 s2 0 1
s1 s2 s1 0 0
s2 s2 s0 1 0

b) Next State Output
State 0 1 0 1

s0 s1 s2 1 0
s1 s0 s3 1 0
s2 s3 s0 0 0
s3 s1 s2 1 1

c) Next State Output
State 0 1 0 1

s0 s3 s1 0 1
s1 s0 s1 0 1
s2 s3 s1 0 1
s3 s1 s3 0 0

4. a) The machine starts in state s0 . On input 1 it moves to state s2 and outputs 0. The next three inputs
(all 0’s) drive it to s3 , then s1 , then back to s0 , with outputs 011. The final 1 drives it back to s2 and
outputs 0 again. So the output generated is 00110.
b) The machine starts in state s0 . On input 1 it moves to state s2 and outputs 1. The next three inputs
(all 0’s) keep it at s2 , outputting 1 each time. The final 1 drives it back to s0 and outputs 0. So the output
generated is 11110.
c) The machine starts in state s0 . Since the first input symbol is 1, the machine goes to state s1 and gives
1 as output. The next input symbol is 0, so the machine moves back to state s0 and gives 0 as output.
The third input is 0, so the machine moves to state s3 and gives 0 as output. The fourth input is 0, so the
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machine moves to state s1 and gives 0 as output. The fifth input is 1, so the machine stays in state s1 and
gives 1 as output. Thus the output is 10001.

6. a) The machine starts in state s0 . On input 0 it moves to state s1 and outputs 1. On the next three inputs
it stays in state s1 and outputs 1. Therefore the output is 1111.
b) The machine starts in state s0 . On input 1 it moves to state s3 and outputs 0. Then on the next input,
which is 0, it moves to state s1 and outputs 0. The next four moves are to states s2 , s3 , s0 , and s1 , with
outputs 1001. Thus the answer is 001001.
c) The idea is the same as in the other parts. The answer is 00110000110.

8. We need 9 states. The middle row of states in our picture correspond to no quarters or nickels having been
deposited. The top row takes care of the cases in which a nickel has been deposited, and the bottom row
handles the cases in which a quarter has been deposited. The columns record the number of dimes (0, 1, or 2).
The transitions back to state s0 are shown as leading off into open space to avoid clutter. Furthermore to
avoid clutter we have not drawn six loops, namely loops at states s3 , s4 , and s5 on input N (since additional
nickels are not recorded), and loops at states s6 , s7 , and s8 on input Q (since additional quarters are not
recorded). We do not show the output, since there is none except for all the transitions back to state s0 ; there
the output is “unlock the door.” The letters stand for the obvious coins.

10. We need only two states, since the action depends only on the parity of the number of bits we have read in so
far. Transitions from state s0 to state s1 are made on the odd-numbered bits, so there we output the same
bit as the input. The transitions back to s0 are made on the even-numbered bits, and there we make the
output opposite to the input.

12. To avoid having the machine being too complex, we will keep the model very simple, assuming that the lock
opens if and only if the input is (10, R, 1)(8, L, 2)(37, R, 1). In our picture, the “input” A stands for all the
inputs other than the inputs shown leading elsewhere. The output 0 means nothing happens; the output U

means the lock is unlocked. If we wished to make our model more realistic, we could, for instance, allow the
input (10, R, 1)(8, L, 1)(8, L, 1)(37, R, 1) to open the lock, as well as, say, (10, R, 1)(8, L, 2)(30, R, 1)(37, R, 1)
(assuming the numbers on the dial are arranged counterclockwise).
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14. The picture for this machine would be a little cumbersome to draw; it has 25 states. Instead, we will describe
the machine verbally. We assume that possible inputs are the digits 0 through 9. We will let s0 be the start
state. States s1 , s2 , s3 , and s4 will be the states reached after the user has entered the successive digits
of the correct password, so on the transition from s3 to s4 , the output is the welcome screen. No output is
given for the transitions from s0 to s1 , from s1 to s2 , or from s2 to s3 . States s11 , s12 , s13 , and s14 will
correspond to wrong digits. Thus there is a transition from s0 to s11 if the first digit is wrong, from s1 to
s12 if the second digit is wrong, and so on. There are transitions from s11 to s12 to s13 to s14 on all inputs.
No output is given for the transitions to s11 , s12 , or s13 . On transition to s14 an error message is given.

Now state s14 plays the role of s0 , with eight more states to take care of the user’s second attempt at
a correct password, either terminating in a successful sign-on (say, state s104 ) or another failure (say, state
s114 ). Then another set of eight states takes care of the third attempt. State s214 is the last straw—transitions
to it tell the user that the account is locked.

16. We need just three states, to keep track of the remainder when the number of bits read so far is divided by 3.
We output 1 when we enter the state s0 (remainder equals 0).

18. Here we just need to keep track of the number of consecutive 1’s most recently encountered.

20. We draw the diagram just as we draw diagrams for finite-state machines with output, except that the transi-
tions are labeled with just an input (since no outputs are associated with the transitions), and each state is
labeled with an output. For example, since the table tells us that the output of state s2 is 1, we write a 1
next to state s2 ; and since the transition from state s3 on input 1 is to state s0 , we draw an arrow from s3

to s0 labeled 1.

22. Note that the output for a Moore machine is one bit longer than the input: it always starts with the output
for state s0 (which is 0 for this machine).
a) The states that are encountered, after s0 , are s0 , s2 , s2 , and s1 , in that order. Therefore the output is
00111.
b) The states visited are s2 , s1 , s0 , s2 , s1 , s0 , in that order (after the initial state). Therefore the output
is 0110110.
c) The procedure is similar to the other parts. The answer is 011001100110.
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24. The machine is shown here. Note that state si represents the condition that the number of symbols read
in so far is congruent to i modulo 4. Thus we make the output 1 at state s0 and 0 for each of the other
states. Each arrow, labeled 0, 1, stands for two arrows with the same beginning and end, one labeled 0 and
one labeled 1.

SECTION 13.3 Finite-State Machines with No Output
2. By definition AØ = {xy | x ∈ A ∧ y ∈ Ø } . Since there are no elements of the empty set, this set is

empty. Similarly ØA = Ø. (This result is also a corollary of Exercise 6, since a set is empty if and only if its
cardinality is 0.)

4. a) If we concatenate any number of copies of the empty string, then we get the empty string.
b) Clearly A∗ ⊆ (A∗)∗ , since B ⊆ B∗ for all sets B . To show that (A∗)∗ ⊆ A∗ , let w be an element of
(A∗)∗ . Then w = w1w2 . . . wk for some strings wi ∈ A∗ . This means that each wi = wi1wi2 . . . wini for
some strings wij ∈ A . But then w = w11w12 . . . w1n1w21w22 . . . w2n2 . . . wk1wk2 . . . wknk , a concatenation of
elements of A , so w ∈ A∗ .

6. At most, AB contains one element for each element in A × B , namely uv ∈ AB when (u, v) ∈ A × B . (It
might contain fewer elements than this, since the same string in AB may arise in two different ways, i.e., from
two different ordered pairs.) Therefore |AB| ≤ |A×B| = |A||B| .

8. a) This is false; take A = {1} , so that A2 = {11} .
b) This is not true if we take A = Ø. If we exclude that possibility, then the length of every string in A2

would be greater than the length of the shortest string in A if λ /∈ A . Thus the statement is true for A .= Ø.
c) This is true since wλ = w for all strings.
d) This was Exercise 4b.
e) This is false if λ /∈ A , since then the right-hand side contains the empty string but the left-hand side does
not.
f) This is false. Take A = {0,λ} . Then A2 = {λ, 0, 00} , so |A2| = 3 .= 4 = |A|2 .

10. a) This set contains all bit strings, so of course the answer is yes.
b) Every string in this set cannot have two consecutive 0’s except possibly at the very start of the string.
Because 01001 violates this condition, it is not in the set.
c) Our string is (010)1011 and so is in this set.
d) The answer is yes; just take 010 from the first set and 01 from the second.
e) Every string in this set must begin 00; since our string does not, it is not in the set.
f) Every string in this set cannot have two consecutive 0’s . Because 01001 violates this condition, it is not in
the set.
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12. a) The first input keeps the machine in state s0 . The second input drives it to state s1 . The third input
drives it back to state s0 . Since this state (s0 ) is final, the string is accepted.
b) The input string drives the machine to states s1 , s2 , s0 , and s1 , respectively. Since s1 is not a final state,
this string is not accepted.
c) The input string drives the machine to states s1 , s2 , s0 , s1 , s2 , s0 , and s1 , respectively. Since s1 is not
a final state, this string is not accepted.
d) The input string drives the machine to states s0 , s1 , s0 , s1 , s0 , s1 , s0 , s1 , and s0 , respectively. Since
s0 is a final state, this string is accepted.

14. We can prove this by mathematical induction. For n = 0 (the basis step) we want to show that f(s,λ) = s ,
and this is true by the basis step of the recursive definition following Example 4. The inductive step follows
directly from Exercise 15, since xn+1 = xnx .

16. Since s0 is a final state, the empty string is in the language recognized by this machine; note that no other
string leads to s0 . The only other final state is s1 , and it is clear that it can be reached if the input string
is in {1}{0, 1}∗ or in {0}{1}∗{0}{0, 1}∗ . Therefore the answer can be summarized as {λ} ∪ {1}{0, 1}∗ ∪
{0}{1}∗{0}{0, 1}∗ .

18. Since state s0 is final, the empty string is accepted. The only other strings that are accepted are those
that drive the machine to state s1 , namely a 0 followed by any number of 1’s . Therefore the answer is
{λ} ∪ { 01n | n ≥ 0 } .

20. We need to write down the strings that drive the machine to states s1 or s3 . It is not hard to see that the
answer is {1}∗{0}{0}∗ ∪ {1}∗{0}{0}∗{10, 11}{0, 1}∗ .

22. We need to write down the strings that drive the machine to states s0 , s1 , or s5 . It is not hard to see that
the answer is {0}∗ ∪ {0}∗{1} ∪ {0}∗{100}{1}∗ ∪ {0}∗{1110}{1}∗ . This can be written more compactly as
{0}∗{λ, 1} ∪ {0}∗{100, 1110}{1}∗ .

24. We need states to keep track of what the last two symbols of input were, so we create four states, s0 , s1 , s2 ,
and s3 , corresponding to having just seen 00, 01, 10, and 11, respectively. Only s2 will be final, because
we want to accept precisely those strings that end with 10. We make s0 the start state, so in effect we are
pretending that the string began with two 0’s before we started accepting input; this causes no harm.

26. This is very similar to Exercise 29, except that the role of 0 and 1 are reversed, and we want to accept exactly
those strings that are not accepted in Exercise 29. Therefore we take the machine given in the solution to that
exercise, interchange inputs 0’s and 1’s throughout, and make s3 the only nonfinal state (see Exercise 39).

28. We have four states: s0 (the start state) represents having seen no 0’s; s1 represents having seen exactly
one 0; s2 represents having seen exactly two 0’s; and s3 represents having seen at least three 0’s . Only state
s3 is final. The transitions are the obvious ones: from each state to itself on input 1, from si to si+1 on
input 0 for i = 0, 1, 2, and from s3 to itself on input 0.
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30. We have five states: nonfinal state s0 (the start state); final state s1 representing that the string began
with 0; nonfinal state s2 representing that the first symbol in the string was 1; final state s3 representing
that the first two symbols in the string were 11; and nonfinal state s4 , a graveyard. The transitions are from
s0 to s1 on input 0, from s0 to s2 on input 1, from s2 to s3 on input 1, from s2 to s4 on input 0, and
from each of the states s1 , s3 , and s4 to itself on either input.

32. This is very similar to Exercise 33, except that the role of 0 and 1 are reversed, and we want to accept exactly
those strings that are not accepted in Exercise 33. Therefore we take the machine given in the solution to
that exercise, interchange inputs 0’s and 1’s throughout, and make s0 the only final state (see Exercise 39).

34. This is exactly the same as Exercise 36, except that s1 is the one and only final state here.

36. This deterministic machine is the obvious choice. The top row represents having seen an even number of 0’s
(and the bottom row represents having seen an odd number of 0’s); the left column represents having seen an
even number of 1’s (and the right column represents having seen an odd number of 1’s).

38. We prove this by contradiction. Suppose that such a machine exists, with start state s0 . Because the empty
string is in the language, s0 must be a final state. There must be transitions from s0 on each input, but
they cannot be to s0 itself, because neither the string 0 nor the string 1 is accepted. Furthermore, it cannot
be that both transitions from s0 lead to the same state s′ , because a 0 transition from s′ would have to
lead to an accepting state (since 00 is in the language), but that would cause our machine also to accept 10,
which is not in the language. Therefore there must be nonfinal states s1 and s2 with transitions from s0 to
s1 on input 0 and from s0 to s2 on input 1. If our machine has only three states, then there are no other
states. Since the string 00 is accepted, there has to be a transition from s1 to s0 on input 0. Similarly, since
the string 11 is accepted, there has to be a transition from s2 to s0 on input 1. Since the string 01 is not
accepted (but some longer strings that start this way are accepted), there has to be a transition from s1 on
input 1 either to itself or to s2 . If it goes to s1 , then our machine accepts 010, which it should not; and if it
goes to s2 , then our machine accepts 011, which it should not. Having obtained a contradiction, we conclude
that no such finite-state automaton exists.

40. By the solution to Exercise 39, all we have to do is take the deterministic automata constructed in the relevant
parts ((a), (d), and (e)) of Example 6 and change the status of each state (from final to nonfinal, and from
nonfinal to final).

42. We use exactly the same machine as in Exercise 29, but make s0 , s1 , and s2 the final states and make s3

nonfinal. See also Exercise 26.

44. The empty string is accepted, since the start state is final. No other string drives the machine to state s0 ,
so the only other accepted strings are the ones that can drive the machine to state s1 . Clearly the strings 0
and 1 do so. Also, every string of one or more 1’s can drive the machine to state s2 , after which a 0 will
take it to state s1 . Therefore all the strings of the form 1n0 for n ≥ 1 are also accepted. Thus the answer is
{λ, 0, 1} ∪ { 1n0 | n ≥ 1 } . (This can also be written as {λ, 1} ∪ { 1n0 | n ≥ 0 } , since 0 = 100.)
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46. We can end up at state s0 by doing nothing, and we can end up at state s1 by reading a 1. We can
also end up at these final states by reading {10}{0, 1} first, any number of times. Therefore the answer is
({10}{0, 1})∗{λ, 1} .

48. We just write down the paths that take us to state s0 (namely, {0}∗ ), to state s1 (namely, {0}∗{0, 1}{0}∗ ),
and to state s4 via s3 (namely {0}∗{0, 1}{0}∗{10}{0}∗ ) or via s2 (namely {0}∗{0, 1}{0}∗{1}{0}∗{0, 1}{0}∗ ).
Our final answer is then the union of these:

{0}∗ ∪ {0}∗{0, 1}{0}∗ ∪ {0}∗{0, 1}{0}∗{10}{0}∗ ∪ {0}∗{0, 1}{0}∗{1}{0}∗{0, 1}{0}∗

50. One way to do Exercises 50–54 is to construct a machine following the proof of Theorem 1. Rather than do
that, we construct the machines in an ad hoc way, using the answers obtained in Exercises 43–47. As we saw
in the solution to Exercise 43, the language recognized by this machine is {0, 01, 11} . A deterministic machine
to recognize this language is shown below. Note that state s5 is a graveyard state.

52. This is similar to Exercise 44; here is the machine.

54. This one is fairly simple, since the nondeterministic machine is almost deterministic. In fact, all we need to
do is to eliminate the transition from s1 to the graveyard state s2 on input 0, and the transition from s3 to
s2 on input 0.

56. The machines in the solutions to Exercise 55, with the graveyard state removed, satisfy the requirements of
this exercise.
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58. a) That Rk is reflexive is tautological; and that Rk is symmetric is clear from the symmetric nature of its
definition. To see that Rk is transitive, suppose sRkt and tRku ; we must show that sRku . Let x be an
arbitrary string of length at most k . If f(s, x) is final, then f(t, x) is final, and so f(u, x) is final; similarly,
if f(s, x) is nonfinal, then f(t, x) is nonfinal, and so f(u, x) is nonfinal. This is the definition of tRku .
b) Notice that R0 ⊇ R1 ⊇ R2 ⊇ · · · (see part (c)) and that R∗ =

⋂∞
k=0 Rk (see part (e)). To see that R∗ is

reflexive, just note that for every state s and every nonnegative integer k we have (s, s) ∈ Rk , so (s, s) ∈ R∗ .
To see that R∗ is symmetric, suppose that sR∗t . Then sRkt for every k , whence tRks , whence tR∗s . To see
that R∗ is transitive, suppose that sR∗t and tR∗u . Then sRkt and tRku for every k . By the transitivity of
Rk we have sRku , whence sR∗u .
c) The condition sRkt is stronger than the condition sRk−1t , because all the strings considered for sRk−1t

are also strings under consideration for sRkt . Therefore if sRkt , then sRk−1t .
d) This is an example of the general result proved in Exercise 54 in Section 8.5.
e) Suppose that s and t are k-equivalent for every k . Let x be a string of length k . Then f(s, x) and f(t, x)
are either both final or both nonfinal, so by definition, s and t are ∗-equivalent.
f) If s and t are ∗-equivalent, then in particular the empty string drives them both to a final state or drives
them both to a nonfinal state. But the empty string drives a state to itself, and the result follows.
g) We must show that f(f(s, a), x) and f(f(t, a), x) are either both final or both nonfinal. By Exercise 15
we have f(f(s, a), x) = f(s, ax) and f(f(t, a), x) = f(t, ax). But because s and t are ∗-equivalent, we know
that f(s, ax) and f(t, ax)are either both final or both nonfinal.

60. a) Two states are 0-equivalent if the empty string drives both to a final state or drives both to a nonfinal
state. But the empty string drives a state to itself. Therefore two states are 0-equivalent if they are both
final states or both nonfinal states. Thus each equivalence class of R0 consists of only final states or of only
nonfinal states. Since the equivalence classes of R∗ are a refinement of the equivalence classes of R0 , each
equivalence class of R∗ consists of only final states or of only nonfinal states.
b) First suppose that s and t are k-equivalent. By Exercise 58c, s and t are (k−1)-equivalent. Furthermore,
if f(s, a) and f(t, a) were not (k− 1)-equivalent, then some string x of length k− 1 would drive f(s, a) and
f(t, a) to different types of states (one final, one nonfinal). That would mean that ax , which is a string of
length k , would drive s and t to different types of states, contradicting the fact that s and t are k-equivalent.
Conversely, suppose that s and t are (k−1)-equivalent and f(s, a) and f(t, a) are (k−1)-equivalent for every
a ∈ I . We must show that s and t are k-equivalent. A string of length less than k drives both to the same
type of state because s and t are (k−1)-equivalent. So suppose x = aw is a string of length k . Then x drives
both s and t to the same type of state because the machine moves first to f(s, a) and f(t, a), respectively,
but we are given that f(s, a) and f(t, a) are (k− 1)-equivalent. Thus the definition of the transition function
f does not depend on the choice of representative from the equivalence class and so is well defined.
c) There are only a finite number of strings of length k for each k . Therefore we can test two states for k-
equivalence in a finite length of time by just tracing all possible computations. If we do this for k = 0, 1, 2, . . . ,
then by Exercise 59 we know that eventually we will find nothing new, and at that point we have determined
the equivalence classes of R∗ . This tells us the states of M , and the definition in the preamble to this exercise
gives us the transition function, the start state, and the set of final states of M . For more details, see a source
such as Introduction to Automata Theory, Languages, and Computation (2nd Edition) by John E. Hopcroft,
Rajeev Motwani, and Jeffrey D. Ullman (Addison Wesley, 2000).

62. a) For k = 0 the only issue is whether the states are final or not. Thus one equivalence class is {s0, s1, s2, s4}
(the nonfinal states) and the other is {s3, s5, s6} (the final states). For k = 1, we need to try to refine these
classes by seeing whether strings of length 1 drive the machine from the given state to final or nonfinal states.
The string 0 takes us from s0 to a nonfinal state, and the string 1 takes us from s0 to a nonfinal state, so



346 Chapter 13 Modeling Computation

let’s call s0 type NN. Then we see that s1 is type FN, that s2 is type FF, and that s4 is type FF. Therefore
s2 and s4 are still equivalent (they have the same type, so they behave the same, in terms of driving to
final states, on strings of length 1), but s0 and s1 are not 1-equivalent to either of them or to each other.
Similarly, states s3 , s5 , and s6 are types FN, FN, and FF, respectively, so s3 and s5 are 1-equivalent, but s6

is not 1-equivalent to either of them. This gives us the following 1-equivalence classes: {s0} , {s1} , {s2, s4} ,
{s3, s5} , and {s6} . Notice that not only are s2 and s4 1-equivalent, but they will be k-equivalent for all k ,
because they have exactly the same transitions (to s5 on input 0, and to s6 on input 1). The same can be
said for s3 and s5 . Therefore the 2-equivalence classes will be the same as the 1-equivalence classes, and
these will be the k-equivalence classes for all k ≥ 1, as well as the ∗-equivalence classes.
b) We turn s2 and s4 into one state (labeled s2 below), and we turn s3 and s5 into one state (labeled s3

below). The transitions can be copied from the diagram for M .

SECTION 13.4 Language Recognition
2. a) This regular expression generates all strings consisting of exactly two 0’s followed by zero or more 1’s .

b) This regular expression generates all strings consisting of zero or more repetitions of 01.
c) This is the string 01 together with all strings consisting of exactly two 0’s followed by zero or more 1’s .
d) This set contains all strings that start with a 0 and satisfy the condition that all the maximal substrings
of 1’s have an even number of 1’s in them.
e) This set consists of all strings in which every 0 is preceded by a 1, and furthermore the string must start
10 if it is not empty.
f) This gives us all strings that consist of zero or more 0’s followed by 11, together with the string 111.

4. a) The string is in the set, since it is 10112 .
b) The string is in the set, since it is (10)(11).
c) The string is in the set, since it is 1(01)1.
d) The string is in the set: take the first ∗ to be 1, and take the 1 in the union.
e) The string is in the set, since it is (10)(11).
f) The strings in this set must have odd length, so the given string is not in the set.
g) The string is in the set: take ∗ to be 0.
h) The string is in the set: choose 1 from the first group, 01 from the second, and take ∗ = 1.

6. a) There are many ways to do this, such as (λ ∪ 0 ∪ 1)(λ ∪ 0 ∪ 1)(λ ∪ 0 ∪ 1).
b) 001∗0
c) We assume it is not intended that every 1 is followed by exactly two 0’s, so we can write 0∗(100 ∪ 0)∗ .
d) One way to say this is that every 1 must be followed by a 0. Thus we can write 0∗(10 ∪ 0)∗00 .
e) To get an even number of 1’s , we can write something like (0∗10∗10∗)∗ .
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8. a) Since we want to accept no strings, we will have no final states. We need only one state, the start state,
and there is a transition from this state to itself on all inputs.
b) This is just like part (a), except that we want to accept the empty string. Our machine will have two
states. The start state will be final, the other state will not be final. On all inputs, there is a transition from
each of the states to the nonfinal state.
c) This time we need three states, s0 (the start state), s1 , and s2 . Only s1 is final. On input a , there is a
transition from s0 to s1 : this will make sure that a is accepted. All other transitions are to s2 , which serves
as a graveyard state: from s0 on all inputs except a , and from s1 and s2 on all inputs. (It is not clear from
the exercise whether a is meant to be one fixed element of I , as we have assumed, or rather whether we are
to accept all strings of length 1. If the latter is intended, then we have a transition from state s0 to state s1

for every a ∈ I .)

10. The construction is straightforward in each case: we just lead to final states on the desired inputs.

12. These are quite messy to draw in detail.
a) The machine for 0 is shown in Figure 3 (third machine). The machine for 1∗ is shown in Figure 3 (second
machine). We need to concatenate them, so we get the following picture:

b) The machine for 0 is shown in Figure 3 (third machine). The machine for 1 is similar. We need to take
their union. Then we need to concatenate that with the machine for 1∗ , shown in Figure 3 (second machine).
So we get the following picture:

c) The machine for 10∗ is like our answer for part (a), with the roles of 0 and 1 reversed. We need to take
the union of that with the machine for 1∗ shown in Figure 3 (second machine). We then need to concatenate
two copies of the machine for 0 (third machine in Figure 3) in front of this, so we get the following picture:



348 Chapter 13 Modeling Computation

14. In each case we follow the construction inherent in the proof of Theorem 2. There is one state for each
nonterminal symbol (which we have denoted with the name of the symbol), and there is one more state—the
only final one unless S → λ is a transition—which we call F .

16. The transitions between states cause us to put in the rules S → 0A , S → 1B , A → 0B , A → 1A , B → 0B ,
and B → 1A . The transitions to final states cause us to put in the rules S → 0, A → 1, and B → 1. Finally,
since s0 is a final state, we add the rule S → λ .

18. This is clear, since the unique derivation of every terminal string in the grammar is exactly reflected in the
operation of the machine. Precisely those nonempty strings that are generated drive the machine to its final
state, and the empty string is accepted if and only if it is in the language.

20. We construct a new nondeterministic finite-state automaton from a given one as follows. A new state s′0 is
added (but s0 is still the start state). The new state is final if and only if s0 is final. All transitions into s0

are redirected so that they end at s′0 . Then all transitions out of s0 are copied to become transitions out of
s′0 . It is clear that s0 can never be revisited, since all the transitions into it were redirected. Furthermore, s′0
is playing the same role that s0 used to play (after one or more symbols of input have been read), so exactly
the same set of strings is accepted.

22. Let the states that were encountered on input x be, in order, s0 , si1 , si2 , . . . , sin , where n = l(x). Since
we are given that n ≥ |S| , this list of n + 1 states must, by the pigeonhole principle, contain a repetition;
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suppose that the first repeated state is sr . Let v be that portion of x that caused the machine to move from
sr on its first encounter back to sr for the second encounter. Let u be the portion of x before v , and let w

be the portion of x after v . In particular l(v) ≥ 1 and l(uv) ≤ |S| (since all the states appearing before the
second encounter with sr are different). Furthermore, the string uviw , for each nonnegative integer i , must
drive the machine to exactly the same final state as x = uvw did, since the vi part of the string simply drives
the machine around and around in a loop starting and ending at sr (the loop is traversed i times). Therefore
all these strings are accepted (since x was accepted), and so all of them are in the language.

24. Assume that this set is regular, accepted by a deterministic finite-state automaton with state set S . Let
x = 1n

2
for some n ≥

√
|S| . By the pumping lemma, we can write x = uvw with v nonempty, so that uviw

is in our set for all i . Since there is only one symbol involved, we can write u = 1r , v = 1s and w = 1t ,
so that the statement that uviw is in our set is the statement that (r + t) + si is a perfect square. But this
cannot be, since successive perfect squares differ by increasing large amounts as they grow larger, whereas the
terms in the sequence (r + t) + si have a constant difference for i = 0, 1, . . . . This contradiction tells us that
the set is not regular.

26. This (far from easy) proof is similar in spirit to Warshall’s algorithm. The interested reader should consult
a reference in computation theory, such as Elements of the Theory of Computation by H. R. Lewis and
C. H. Papadimitriou (Prentice-Hall, 1981).

28. It’s just a matter of untangling the definition. If x and y are distinguishable with respect to L(M), then
without loss of generality there must be a string z such that xz ∈ L(M) and yz /∈ L(M). This means that
the string xz drives M from its initial state to a final state, and the string yz drives M from its initial state
to a nonfinal state. For a proof by contradiction, suppose that f(s0, x) = f(s0, y); in other words, x and
y both drive M to the same state. But then xz and yz both drive M to the same state, after l(z) more
steps of computation (where l(z) is the length of z ), and this state can’t be both final and nonfinal. This
contradiction shows that f(s0, x) .= f(s0, y).

30. We claim that all 2n bit strings of length n are distinguishable with respect to L . If x and y are two bit
strings of length n that differ in bit i , where i ≤ 1 ≤ n , then they are distinguished by any string z of length
i− 1, because one of xz and yz has a 0 in the nth position from the end and the other has a 1. Therefore
by Exercise 29, any deterministic finite-state automaton recognizing Ln must have at least 2n states.

SECTION 13.5 Turing Machines
2. We will indicate the configuration of the Turing machine using a notation such as 0[s2]1B1, as described in

the solution to Exercise 1. (This means that the machine is in state s2 , the tape is blank except for a portion
that reads 01B1, and the tape head points to the left-most 1.) We indicate the successive configurations with
arrows.
a) Initially the configuration is [s0]0101. Using the first five-tuple, the machine next enters configuration
0[s1]101. Thereafter it proceeds as follows: 0[s1]101 → 01[s1]01 → 011[s2]1. Since there is no five-tuple for
this combination (in state s2 reading a 1), the machine halts. Thus (the nonblank portion of) the final tape
reads 0111.
b) [s0]111 → [s1]B011 → 0[s2]011 → halt; final tape 0011
c) [s0]00B00 → 0[s1]0B00 → 01[s2]B00 → 010[s3]00 → halt; final tape 01000
d) [s0]B → 1[s1]B → 10[s2]B → 100[s3]B → halt; final tape 100
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4. a) The machine starts in state s0 and sees the first 1. Therefore using the first five-tuple, it replaces the
1 by a 1 (i.e., leaves it unchanged), moves to the right, and stays in state s0 . Now it sees the 0, so, using
the second five-tuple, it replaces the 0 by a 1, moves to the right, and stays in state s0 . When it sees the
second 1, it again leaves it unchanged, moves to the right, and stays in state s0 . Now it reads the blank,
so, using the third five-tuple, it leaves the blank alone, moves left, and enters state s1 . At this point it sees
the 1 and so leaves it alone and enters state s2 (using the fourth five-tuple). Since there are no five-tuples
telling the machine what to do in state s2 , it halts. Note that 111 is on the tape, and the input was accepted,
because s2 is a final state.
b) This is essentially the same as part (a). Every 0 on the tape is changed to a 1 (and the 1’s are left
unchanged), and the input is accepted. (The only exception is that if the input is initially blank, then the
machine will, after one transition, be in state s1 looking at a blank and have no five-tuple to apply. Therefore
it will halt without accepting.)

6. We need to scan from left to right, leaving things unchanged, until we come to the blank. The five-
tuples (s0, 0, s0, 0, R) and (s0, 1, s0, 1, R) do this. One more five-tuple will take care of adding the new
bit: (s0, B, s1, 1, R).

8. We can do this with just one state. The five-tuples are (s0, 0, s0, 1, R) and (s0, 1, s0, 1, R). When the input is
exhausted, the machine just halts.

10. We need to have the machine look for a pair of consecutive 1’s. The following five-tuples will do that:
(s0, 0, s0, 0, R), (s0, 1, s1, 1, R), (s1, 0, s0, 0, R), and (s1, 1, s2, 0, L). Once the machine is in state s2 , it has
just replaced the second 1 in the first pair of consecutive 1’s with a 0 and backed up to the first 1 in this
pair. Thus the five-tuple (s2, 1, s3, 0, R) will complete the job.

12. We can stay in state s0 until we have hit the first 1; then stay in state s1 until we have hit the second 1.
At that point we can enter state s2 which will be an accepting state. If we come to the final blank while
still in states s0 or s1 , then we will not accept. The five-tuples are simply (s0, 0, s0, 0, R), (s0, 1, s1, 1, R),
(s1, 0, s1, 0, R), and (s1, 1, s2, 1, R).

14. We use the notation mentioned in the solution to Exercise 2. The tape contents are the symbols shown in
each configuration, without the state.

a) [s0]0011 → M [s1]011 → M0[s1]11 → M01[s1]1 → M011[s1]B → M01[s2]1 → M0[s3]1M → M [s3]01M →
[s4]M01M → M [s0]01M → MM [s1]1M → MM1[s1]M → MM [s2]1M → M [s3]MMM → MM [s5]MM →
MMM [s6]M → halt and accept
b) [s0]00011 → M [s1]0011 → M0[s1]011 → M00[s1]11 → M001[s1]1 → M0011[s1]B → M001[s2]1 →
M00[s3]1M → M0[s3]01M → M [s4]001M → [s4]M001M → M [s0]001M → MM [s1]01M → MM0[s1]1M →
MM01[s1]M → MM0[s2]1M → MM [s3]0MM → M [s4]M0MM → MM [s0]0MM → MMM [s1]MM →
MM [s2]MMM → halt and reject
c) [s0]101100 → halt and reject
d) [s0]000111 → M [s1]00111 → M0[s1]0111 → M00[s1]111 → M001[s1]11 → M0011[s1]1 → M00111[s1]B →
M0011[s2]1 → M001[s3]1M → M00[s3]11M → M0[s3]011M → M [s4]0011M → [s4]M0011M →
M [s0]0011M → MM [s1]011M → MM0[s1]11M → MM01[s1]1M → MM011[s1]M → MM01[s2]1M →
MM0[s3]1MM → MM [s3]01MM → M [s4]M01MM → MM [s0]01MM → MMM [s1]1MM →
MMM1[s1]MM → MMM [s2]1MM → MM [s3]MMMM → MMM [s5]MMM → MMMM [s6]MM →
halt and accept
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16. This task is similar to the task accomplished in Example 3. There is one sense in which it is simpler: since
we are allowing n = 0, we do not need to make any special efforts to reject the empty string. There is one
sense, of course, in which it is harder, namely the need to change two 0’s to M ’s at the left for every one
1 changed to an M at the right. The following five-tuples should accomplish the job: (s0, 0, s1,M,R),
(s0, B, s5, B,R), (s0,M, s5,M,R), (s1, 0, s2,M,R), (s2, 0, s2, 0, R), (s2, 1, s2, 1, R), (s2,M, s3,M,L),
(s2, B, s3, B, L), (s3, 1, s4,M,L), (s4, 0, s4, 0, L), (s4, 1, s4, 1, L), (s4,M, s0,M,R).

18. This is pretty simple, since all we need to do is to put in two extra 1’s . The following five-tuples will do the
job: (s0, 1, s1, 1, L), (s1, B, s2, 1, L), (s2, B, s3, 1, L).

20. We want to erase 1’s in sets of three, as long as there are at least four 1’s left. We can accomplish this by
first checking for the presence of the four 1’s , then erasing them, and then repositioning the tape head to
repeat this task. The following five-tuples will do the job: (s0, 1, s1, 1, R), (s1, 1, s2, 1, R), (s2, 1, s3, 1, R),
(s3, 1, s4, 1, L), (s4, 1, s5, B, L), (s5, 1, s6, B, L), (s6, 1, s7, B,R), (s7, B, s8, B,R), (s8, B, s0, B,R).

22. We start with a string of n + 1 1’s, and we want to end up with a string of 2n + 1 1’s. Our idea will be to
replace the last 1 with a 0, then for each 1 to the left of the 0, write a new 1 to the right of the 0. To keep
track of which 1’s we have processed so far, we will change each left-side 1 with a 0 as we process it. At the
end, we will change all the 0’s back to 1’s . Basically our states will mean the following (“first” means “first
encountered”): s0 , scan right for last 1; s1 , change the last 1 to 0; s2 , scan left to first 1; s3 , scan right
for end of tape (having replaced the 1 where we started with a 0) and add a 1 at the end; s4 , scan left to
first 0; s5 , replace the remaining 0’s with 1’s; s6 , halt.

The needed five-tuples are as follows: (s0, 1, s0, 1, R), (s0, B, s1, B, L), (s1, 1, s2, 0, L), (s2, 0, s2, 0, L),
(s2, 1, s3, 0, R), (s2, B, s5, B,R), (s3, 0, s3, 0, R), (s3, 1, s3, 1, R), (s3, B, s4, 1, L), (s4, 1, s4, 1, L),
(s4, 0, s2, 0, L), (s5, 0, s5, 1, R), (s5, 1, s6, 1, R), (s5, B, s6, B,R).

24. We need to erase the first input, then replace the asterisk by a 1 and write one more 1. This straightforward
task can be done with the following five-tuples: (s0, 1, s0, B,R), (s0, ∗, s1, 1, L), (s1, B, s2, 1, L).

26. Since the number n is represented by n+ 1 1’s, we need to be a little careful here. The most straightforward
approach is to replace the middle asterisk by a 1 and erase one 1 from each end of the input. The following
five-tuples will do the job: (s0, 1, s1, B,R), (s1, 1, s1, 1, R), (s1, ∗, s2, 1, R), (s2, 1, s2, 1, R), (s2, B, s3, B, L),
(s3, 1, s4, B,R).

28. The discussion in the preamble tells how to take the machines from Exercises 18 and 23 and create a new
machine. The only catch is that the tape head needs to be back at the leftmost 1. Suppose that sm , where m

is the largest index, is the state in which the Turing machine for Exercise 18 halts after completing its work,
and suppose that we have designed that machine so that when the machine halts the tape head is reading the
leftmost 1 of the answer. Then we renumber each state in the machine for Exercise 23 by adding m to each
subscript, and take the union of the two sets of five-tuples.

30. A decision problem is one with a yes/no answer. These are all decision problems except for part (c); in that
case, the answer is a vertex number rather than “yes” or “no.”

32. The technical details here are rather messy. The reader should consult the article on the busy beaver problem
in A. K. Dewdney’s The New Turing Omnibus: 66 Excursions in Computer Science (Freeman, 1993); further
references are given there.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 13
2. We will construct a grammar that will initially generate a string of the form DD . . .D0E , with zero or more

D’s on the left, a 0 in the middle, and an E on the right. The D’s will migrate across the 0’s in the middle,
each one doubling the number of 0’s present. When the D reaches the E on the right, it is absorbed. Thus
our grammar has the following rules. The rules S → A0E , A → AD , and A → λ create the strings of the
formed mentioned above. The rule D0 → 00D causes the doubling. The rule DE → E absorbs the D’s .
Finally, we need to add the rule E → λ to finish off every derivation.

4. It can be proved by induction on the length of the derivation that every terminal string derivable from A or
B is a well-formed string of parentheses. It follows that the language generated by this grammar is contained
in the set of well-formed strings of parentheses. Conversely, it can be proved by induction on the length of the
string that every well-formed string of parentheses is derivable from this grammar.

6. There is only one derivation of length n , for each n , namely S ⇒ 0S ⇒ 00S ⇒ · · · ⇒ 0n−1S ⇒ 0n . Therefore
derivation trees are unique.

8. a) This is true: A(B ∪ C) = { ax | a ∈ A ∧ x ∈ B ∪ C } = { ax | a ∈ A ∧ (x ∈ B ∨ x ∈ C) } = { ax | (a ∈
A ∧ x ∈ B) ∨ (a ∈ A ∧ x ∈ C) } = { ax | a ∈ A ∧ x ∈ B } ∪ { ax | a ∈ A ∧ x ∈ C } = AB ∪AC .
b) This is also true; the proof is similar to that in part (a).
c) This is true: (AB)C = {xc | x ∈ AB ∧ c ∈ C } = { abc | a ∈ A ∧ b ∈ B ∧ c ∈ C } and A(BC) equals the
same set.
d) This is not true. Let A = {0} and B = {1} . Then 01 is in the left-hand side but not the right-hand side.

10. Clearly the strings generated by this regular expression have no 0 immediately preceding a 2. Conversely, we
can take any string with this property and, by grouping the 2’s together, view it as coming from this regular
expression (we need to imagine a group of no 2’s between every pair of consecutive 1’s).

12. a) This regular expression is equivalent to (0∪1)∗ , whose star height is 1. Clearly we cannot find an equivalent
expression with star height 0.
b) It is always true that (AB∗)∗ is equivalent to A∗ ∪A(A∪B)∗ . Thus we can replace the given expression
(which has star height 3) by one with star height 2, namely 0∗ ∪ 0(0 ∪ 01∗0)∗ . Now since the substrings
of consecutive 0’s and 1’s can be arbitrarily long, and yet not all strings are in the language (since each two
maximal substrings of 1’s must be separated by at least two 0’s), it is not possible to reduce the star height
to 1.
c) This regular expression is equivalent to (0∪1)∗ , whose star height is 1. Clearly we cannot find an equivalent
expression with star height 0.

14. We draw only the deterministic finite-state automaton for this problem. The finite-state machine with output
is identical, except that the output is 1 if and only if the transition is to the final state in our picture. The
idea here is simply that state si corresponds to having just seen i consecutive 1’s .
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16. If x is a string and s is a state, then f(s, x) means the state that string x drives the machine to if the
machine is currently in state s .
a) It is clear that by following the appropriate arrows, we can reach all the states except s3 from state s0 ;
for example, f(s0, 01) = s5 and f(s0,λ) = s0 . Clearly we cannot reach state s3 from any other state.
b) Clearly only states s2 and s5 are reachable from state s2 .
c) A transient state s is one for which there is no path from s to itself. Clearly, once we leave state s0 or s1

or s3 or s6 , we cannot return, so these are the transient states. Because of the loops, the other states are not
transient. (Note, however, that a state does not need to have a loop at it in order to be nontransient.)
d) Clearly only s4 and s5 are the sinks, since the other states all have arrows leaving them.

18. a) To specify a deterministic automaton, we need to pick a start state (n ways to do this), we need to pick a
set of final states (2n ways to do this), and for each pair (state, input) (and there are nk such pairs) we need
to choose a state for the transition (nnk ways to do this). Therefore the answer is n2nnnk = 2nnnk+1 .
b) This is the same as part (a), except that we need to choose one of the 2n subsets of states for each pair
(state, input). Therefore the answer is n2n(2n)nk = n2n+kn2

.

20. No states are final, so no strings are accepted. Therefore the language recognized by this machine is Ø.

22. a) An even number (we assume that “positive even number” is implied here) of 1’s is represented by 11(11)∗ .
An odd number of 0’s is similarly represented by 0(00)∗ . If we interpret “interspersed” in a positive sense
(insisting that the string start and end with 1’s), then our answer is

11(11)∗(0(00)∗11(11)∗)∗ .

b) This one is straightforward: (1 ∪ 0)∗(00 ∪ 111)(1 ∪ 0)∗ .
c) The middle of this expression must be (1(0 ∪ 00))∗ , so as to guarantee the desired interspersing. The
beginning may allow up to two 0’s, and the end may allow up to one 1. Therefore the answer is (Ø∗ ∪ 0 ∪
00)(1(0 ∪ 00))∗(Ø∗ ∪ 1).

24. It is clear from the definition of the sets generated by regular expressions that the union of two regular sets is
regular. From Exercise 23 we know that the complement of a regular set is regular. Now A ∩ B = (A ∪B);
therefore if A and B are regular, so is their intersection.

26. The proof is essentially identical to the solution of Exercise 24 in Section 13.4, since the gaps between successive
powers of 2, like the gaps between successive squares, grow as the numbers get larger.

28. Suppose that there were a context-free grammar generating this set, and apply the analog of the pumping
lemma to obtain strings u , v , w , x , and y such that not both v and x are empty and uviwxiy is of the
form 0n1n2n for all i . Now if either v or x contains two or three different symbols, then uv2wx2y has the
symbols out of order. Therefore at least one symbol (say the 0) is missing from vx . On the other hand at
least one symbol (say the 1) appears in vx (since vx .= λ). But then uviwxiy must have more 1’s than 0’s
for large i , a contradiction. Therefore there is no such context-free grammar.

30. The input will be a string of n1 + 1 1’s, followed by an asterisk, followed by a string of n2 + 1 1’s, with
the tape head positioned at the leftmost 1 of the first argument. We want the machine to erase a 1 from
the second argument for each 1 it finds in the first argument, leaving n2 − n1 1’s in the second string (also
erasing the 1’s in the first argument in the process), and then to replace the asterisk by a 1. If n2 < n1 ,
however, we want the machine to halt with just one 1 on the tape (because the answer in that case is the
number 0). We will adopt a recursive approach, in the sense that after one erasure, the problem becomes to
compute f(n1 − 1, n2 − 1), which will have the same answer.
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In the Turing machine tuples that follows, the intent is that s0 is the state in which we erase a 1 from
n1 (or notice that we are essentially finished); s1 is the state in which we scan right to find the last 1 in n2 ;
s2 is the state in which we erase a 1 from n2 (or notice that n2 < n1 ); s3 is the state in which we scan back
to the starting point; s4 is the clean-up state for handling the case n2 < n1 , and s5 is the halt state.

These tuples should accomplish the job: (s0, 1, s1, B,R), (s0, ∗, s5, 1, L), (s1, 1, s1, 1, R), (s1, ∗, s1, ∗, R),
(s1, B, s2, B, L), (s2, 1, s3, B, L), (s2, ∗, s4, B, L), (s3, 1, s3, 1, L), (s3, ∗, s3, ∗, L), (s3, B, s0, B,R),
(s4, 1, s4, B, L), and (s4, B, s5, 1, L).


